

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

D.J. Y. R. Tem Whatsical

ENDSEM-REEXAMINATION JULY-2022

Program: ELECTRICAL

Course Code: BS-BTE401

Course Name: APPLIED MATHEMATICS-IV

• Attempt any five out of seven questions

• Use of scientific calculator is allowed.

Duration: 03 Hours

Maximum Points: 100

Semester: IV

12/3/22

QN O.	QUESTION	PO IN TS	СО	BL	PI
QI	If the mean of a binomial distribution is 3 and the variance is	06	1	2	2.1.3
a)	$\frac{3}{2}$, find the probability of obtaining atleast 4 success.				
QI b)	In a partially destroyed laboratory record of an analysis of correlation data, the following results only are legible: Variance of $X = 9$ Regression equations: $8x - 10y + 66 = 0$	06	3	3	1.1.1
	What are i.Mean, value of x and y ii.Standard deviation of y. iii.Coefficient of correlation between x and y				
QI c)	Verify whether the following functions can be looked upon as probability density function? $f(x) = \frac{1}{2}e^{- x }, -\infty < x < \infty$	08	1	1	1.1.2
QII a)	The diameters of can tops produced by a machine are normally distributed with standard deviation of 0.01 cms. At what mean diameter the machine be set that not more than 5% of the can tops produced by the machine have diameters exceeding 3 cms?	10	1	2	2.1.4
QII b)	A & B throw alternately a pair of dice whoever throw '9' first wins the game. If 'A' starts the game. What are their chances of winning?	10	2	2	2.3.1
QIII a)	Using Taylor's series method solve $\frac{dy}{dx} = 1 - 2xy$ given that y(0) = 0 and hence find y(0.2) and y (0.4)	06	1	2	1.1.2
QIII b)	The sales-data of an article in six shops before and after a special promotional campaign are as under	06	1	2	1.1.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- REEXAMINATION JULY-2022

	Shops	A	В	С	D	E	F			1	
	Before	53	28	31	48	50	42				
	Campaig	n									
	After	58	29	30	55	56	45				
	Campaig	n									
			be judged to	be a succ	ess at 5%	LOS.					
QIII			marks obtai					08	1	1	2.1.4
c)	and 46 wit	h standa	stry are norr rd deviation ring total m	s 15,12,16	respecti	vely. F	find the				
QIV a)			as two cars,					06	1	3	2.3.1
	5	her car i	nean 1.5. Ca s used and t fused.								
QIV	Five defe	ctive bul	bs are accid	ently mixe	ed with tw	venty į	good	06	2	2	1.1.3
b)	not it is de	efective.	sible to just I Find the pro if four bulb	bability d	istribution	n of th	e number				
QIV c)	t		ng system 4x –10y +3				method	08	3	1	2.3.4
QV a)			ribution for			and co	mpare	06	1	1	2.3.1
a)		0	1 2 14 20	3 4 34 22	5 8						
QV	In an exp	eriment c	on immuniz	ation of ca	ttle from	tuberc	ulosis the	06	1	2	1.1.1
b)	following	results v	were obtaine	ed.							
			Affec	ted	N	ot affe	ected	-			
	1 1										(

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM-REEXAMINATION JULY-2022

	Not Inoculated 7	57	155	8	62		
	Use Chi square test to det preventing tuberculosis.	ermine the effica	cy of vaccine in				
QV	Solve the following syst	em of equation	s by Gauss –	Seidel 08	3	2	2.3.4
c)	method correct to three do x + y + 54z = 110 $27x + 6y - z = 85$ $6x + 15y + 2z = 72$						
QVI	Compute spearman's rank	coorelation coe	fficient for the	06	2	1	1.1.3
a)	following data X 10 12 Y 12 18	18 18 15 25 25 50	25				
QVI	A die is thrown 264 time	s with the follow	ing results	06	1	3	2.1.3
b)	No appeared on 1 die		4 5 6				
	Frequency 40 Show that the die is biase	2	50 54 60				
QVI c)	Using Runge-Kutta methors solution at $x = 0.6$ for $\frac{dy}{dx} = 0.2$.	•			3	1	1.1.1
QVI I a)	Using Newton-Raphson r with $x_0 = 10$ upto 3 places		oot of $x \log_{10} x =$	12.34 06	3	3	2.1.4
QVI	Using Euler's method fin	d the approximat	e value of y at x	= 2 06	2	2	1.1.3
Ib)	where $\frac{dy}{dx} = \frac{y - x}{x}$ and						-
0444	y(1) = 2 taking $h = 0.2$ an		n exact value.				
QVI	Solve by Gauss Eliminati			08	3	3	2.1.3
Ic)	2x - y + 3z + w = 9, 3x + y						
	5x - 4y + 3z - 6w = 2, $x - 6w = 2$	2y - z + 2w = -2					

Percentage Points of t- distribution

0.1 For $\Phi = 10$ d. o. f. Example

- 1.812) =	0.02	31.812	6.965	4.541	3.747	
P(t >1.812)	0.05	12.706	4,303	3.182	2,778	
1,	0.10	6.314	2:920	2.353	2.132	4400
0	0.20	3.078	1.886	1.638	1.533	1 476
	a/	-	N	n	4	ır.

																																		_
0.01	63,657	9.925	5.841	4.604	4.032	3.707	3.499	3.355	3.250	3.169	3.106	3.055	3.012	2.877	2.947	2.021	2.898	2.878	2.861	2.845	2 831	2.819	2.807	2.797	2.287	977.6	2.771	2.763	2.758	2.750	2 704	2 660	2.617	2 576
0.02	31.612	6.965	4.541	3.747	3.365	3.143	2.998	2.886	2.821	2.764	2.718	2.681	2.650	2.824	2.602	2.583	2.567	2.552	2.539	2.528	2.518	2.508	2.500	2.492	2.485	2.479	2.473	2.467	2.462	2.457	2.423	2.390	2.358	2.325
0.05	12.706	4,303	3,182	2.778	2.571	2.447	2.365	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110	2.101	2.093	2.086	2.080	2.074	2.069	2.084	2.080	2.056	2.052	2.048	2.045	2.042	2.021	2.000	1.980	1.960
0.10	6.314	2:920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.812	1.798	1.782	1.77.1	1,761	1.753	1.748	1.740	1.734	1.729	1.726	1.721	1.717	1.714	1.711	1.708	1.706	1.703	1.701	1.699	1.697	1.684	1.671	1.658	1.645
0.20	3.078	1.886	1.638	1.533	1.476	1.440	1.415	1.397	1.383	1.372	1.363	1.356	1.350	1.345	1.341	1.337	1.333	1.330	1.328	1.325	1.323	1.321	1.319	1.318	1.316	1.315	1.314	1.313	1.311	1.310	1.303	1.296	1.289	1.282
2/0	-	2	က	4	ιΩ	9	_	∞	6	0	=	2	5	4	5	9	1	æ	<u>6</u>	50	21	22	eg S	54	52	56	27	8 8	500		40	00	120	3

Applied Mathematics - I

(E)

Statistical Tables

Percentage Points of χ^2 - Distribution

P($\chi^2 > 15.99$) = 0.10 For Φ = 10 d. o. f. Example

Q /	0 = .99	0.95	0.50	0.10	90.0	0.02	0.01
_	000157	.00393	.455	2.706	3.841	5 214	A A 2E
2	0201	103	1.386	4.605	5.991	7.824	0.030
က	115	352	2.366	6.251	7.815	9 837	11 241
4	297	711	3.357	7.779	9.488	11.68A	13 277
5	554	1.145	4.351	9.236	11.070	13.388	15.086
9	872	1.635	5.348	10.645	12.592	15.033	16.812
1	1 339	2 167	6.346	12.017	14.067	16,622	18 475
æ	1 646	2.733	7.344	13.362	15.507	18.168	20.000
σ	2.088	3.325	8.343	14.684	16.919	19.679	21 868
10	2 558	3.940	9.340	15.987	18.307	21.161	23.209
-	3 053	4.575	10.341	17.275	19.675	22.61A	24 72E
2	3 571	5.228	11.340	18.549	21.026	24 054	26 947
<u>e</u>	4.107	5.892	12.340	19.812	22 362	25.479	77.600
14	4.660	6.571	13.339	21.064	23 685	2/4:02	200.12
15	4.229	7.261	14.339	22.307	24.996	28.250	30.570
16	5.812	7.962	15.338	23.542	26.296	29.633	32,000
17	6.408	8.672	16.338	24.769	27.587	30,995	33 400
2 0	7,015	9.390	17.338	25.989	28.869	32 346	34 00
19	7.633	10.117	18.338	27.204	30.144	33.687	36 101
8	8.260	10.851	19.337	28.412	31.410	35.020	37.566
21	8.897	11 591	20.337	29.615	32 671	26.20	
22	9 542	12.338	21.337	30,813	33 924	37 850	20.932
ន	10.196	13.091	22.337	32.007	35 172	38.088	40.689
24	10.856	13.848	23.337	32.198	36 415	40.220	41.036
25	11.524	14.611	24.337	34.382	37 852	41 500	44 944
28	12.198	15.379	25.338	35.363	38 885	41 050	41.0.44
27	12.879	16.151	26.336	36.741	40 113	44.40	10.042
28	13.565	18.928	27.336	37.916	41.337	45.410	40.963
8	14.256	17.708	28.336	39.087	42 SK7	48 800	40.278
8	14.953	18 483	29.336	40.258	43.773	47 082	49.588
					2	71.50g	50.892

Ξ

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that $z \approx 1$ lie between z = 0 and $z = z_1$.

-		4 0753		1141																											
_																															
			_	1480																											
.0319	.0714	.1103		.1480	1844		2190	2517	2517	2190 .2517 .2823 3106	2190 .2517 .2823 .3106	2190 2517 2823 3106 3365	2190 2517 2823 3106 3365 3599	2190 25517 2823 3106 3365 3365 3869 3860 3890	2190 2517 2823 3106 3365 3365 3599 3810 3997	2190 2517 28823 3106 3365 3599 3810 3997 4162	2190 2517 2883 3106 3365 3365 3599 3891 4162 429	2190 2517 2823 3106 3365 3365 3599 38810 3897 4162 4306	2190 2517 2823 3106 3365 3365 38810 3897 4162 4306 4535	2190 2517 2823 3106 3365 3365 3810 3897 4162 4825 4625	2190 2517 2823 3106 3365 3365 3810 3810 3810 4162 42306 4429 4535 4629	2190 2517 2823 3106 3365 3365 3810 3897 4162 429 4535 4699 4761	2190 2517 2823 3106 3365 3365 33810 3897 4162 4306 4535 4625 4625 4862 4862	2190 2517 2823 3106 3365 3365 3897 4162 4809 4625 4699 4761 4812	2190 2517 2823 3106 3365 3365 3810 3897 4162 429 4535 4625 4699 4761 4854 4854	2190 2517 2823 3106 3365 3365 3810 3810 3810 4816 4429 4535 4699 4761 4812 4887 4934	2190 2517 2823 3106 3365 3365 33810 3891 4162 4535 4625 4625 4625 4625 4625 4761 4887 4913	2190 2517 2823 3106 3365 3365 3365 3897 4162 4535 4625 4625 4625 4625 4887 4913 4934	2190 2517 2823 3106 3365 3365 3365 3897 4162 4535 4625 4625 4689 4761 4887 4913 4934	2190 2517 2823 3106 3365 3365 3365 3897 4162 4536 4535 4625 4689 4761 4887 4913 4934 4951	2190 2517 2823 3106 3365 3365 3810 3897 4162 4809 4761 4887 4887 4913 4934 4934 4934 4934 4934 4934 4934
								1				1 1 1																			
0675 3 .0675 5 .1064 5 .1443 5 .1808						3 2157	_																								
.0636 .0636 .1026 .1406	.0636 .1026 .1406	.1406	.1406	.1772	0,0	67 7	.2454		2764	2764	.3051 .3315	2764 3051 3315 3554	.3051 .3315 .3315 .3554 .3770	.2764 .3051 .3315 .3554 .3770	.3051 .3051 .3554 .3770 .3982 .4131	.2764 .3051 .3315 .3554 .3770 .3862 .4131	2784 3051 3315 3554 3770 3862 4131 4279	.3051 .3315 .3554 .3770 .3862 .4131 .4279	2764 3051 3315 3554 3770 3962 4131 4279 4406	2764 3051 3554 3770 3982 4131 4279 4406 4406 4408	2784 3051 3315 3554 3770 3862 4131 4279 4415 4608 4750	2784 3051 3554 3770 3882 4131 4279 4406 4415 4608 4608 4750	2784 3051 3315 3554 3770 3882 4131 4279 44608 4686 4750 4803	2784 3051 3315 3554 3770 3982 4131 4279 4406 4415 4608 4750 4803 4846	2784 3051 3315 3554 3770 3982 4131 4279 4406 4415 4608 4750 4803 4846 4841	2764 3051 3315 3554 3770 3962 4131 4279 4415 4608 4750 4868 4750 48903 4846 4846	2764 3051 3315 3554 3770 3862 4131 4279 44608 4668 4750 4750 4841 4841 4840 4909	2764 3051 3315 3554 3770 3962 4131 4279 44608 4608 4750 4841 4841 4841 4841 4841 4841 4841 484	2784 3051 3315 3554 3770 3982 4131 4279 44608 4608 4750 4841 4841 4841 4841 4841 4841 4841 484	2784 3051 3315 3554 3770 3982 4131 4279 44608 4608 4608 4750 4841 4841 4841 4841 4909 4931	2764 3051 3315 3554 3770 3982 4131 4279 4406 4415 4608 4608 4750 4841 4846 4841 4846 4841 4846 4841 4846 4841 4846 4841 4846 4841 4846 4846
					-		_																								
.0596 .0596 .0987 .1368 .1736	.0596 .0987 .1368 .1736	.0987 .1368 .1736	.1368 .1736	.2086	2086		.2422	.2734	-	3053	.3023	.3023	.3023 .3289 .3531 .3749	.3289 .3289 .3531 .3749 .3944	.3023 .3289 .3531 .3749 .3944 .4115	.3023 .3289 .3531 .3749 .3944 .4115 .4265	.3023 .3289 .3531 .3749 .3944 .4115 .4265	.3023 .3288 .3531 .3534 .3944 .4116 .4394 .4394	3023 3289 3289 3944 4115 4265 4384 4505 4505	3023 3289 3289 3444 3944 4115 4265 4265 4505 4699 4699	3023 3289 3289 3749 3944 4115 4265 4394 4508 4508 4509 4508	3023 3289 3281 3531 3749 3944 4115 4265 4265 4509 4509 4744 4744	3023 3286 3287 3944 3944 4115 4266 4394 4506 4744 4796 4796	3023 3289 3289 3444 4115 4265 4265 4265 4509 4784 4798 4798 4798	3023 3289 3289 3444 4115 4296 4296 4508 4798 4784 4798 4842 4848 4848	3023 3289 3289 3749 3944 4115 4296 4505 4505 4699 4744 4748 4788 4842 4878 4878	3023 328 328 3284 3944 4115 4286 4286 4744 4878 4878 4878 4878 4878 4878 48	3023 3289 3289 3749 3749 4115 4205 4209 4679 4774 4774 4774 4774 478 4842 4846 4846 4846	3023 3289 3289 3749 3749 4115 4205 4505 4505 4744 4749 4749 4749 4845 4845 4846 4846 4846 4846	3023 3289 3289 3289 3149 4115 4205 4209 4707 4842 4842 4846 4846 4846 4846 4846 4846	3023 3289 3289 3444 4115 4265 4265 4699 4778 4788 4842 4878 4878 4878 4878 4878
Action in the second	Indiana in the second	Control of the last		1				- 10	2995		3264	FB - 175																			
				A - 1 - 3	7 - 1 3	- 24.3	10.3			-		- 10		200																	
0910 0910 1293 1664 22019	0910 1293 1664 1664 2019	.0910 1293 1664 2019 2357	1293 1664 2019 2357	2019	2357	2357	0630	2003	2967	3238	10 m	3485	3485	3485	.3485 .3708 .3907	3485 3708 3907 4082 4238	3485 3708 3907 4082 4238	3485 3708 3907 4082 4238 4370	3485 3708 3907 4082 4238 4370 4484	3485 3708 3907 4082 4238 4484 4582 4664	3465 3708 3708 3807 4082 4238 4370 4484 4582 4664	3465 3708 3907 4082 4238 4370 4484 4582 4584 4584 4584 4732	3485 3708 3907 4082 4238 4370 4484 4582 4664 4732 4732 4732	3485 3708 3907 4082 4238 4370 4484 4582 4664 4732 4732 4732 4734 4734 4734 4734	3907 3907 4082 4238 4484 4582 4584 4732 4732 4871 4871	3465 3708 3807 4082 4238 4582 4582 4732 4732 4834 4834 4834 4834 4732 4732 4732 4732	3485 3708 4082 4238 4370 4484 4582 4664 4732 4732 4732 4734 4734 4734 4971 4971	3485 3708 4082 4238 4370 4484 4582 4732 4732 4734 4734 4734 4734 4734 473	3485 3708 3907 4082 4238 4238 4582 4732 4732 4732 4732 4734 4732 4734 4734	3465 3708 4082 4238 4238 4484 4582 4732 4732 4732 4734 4734 4734 4734 4834 4943 4943 4968	3485 3708 4082 4238 4370 4484 4582 4664 4732 4732 4734 4734 4734 4734 4834 4967 4968 4968 4968
0.0874 0.0877 0.0871 0.087 1.1255 1.1385 2.2324 2.242			the second	and the same	in a supplier of	the Property	-		2839	3212	1	3461	-5-10	of the last	at the state of	and the second second															
0.438 0.0			A CONTRACTOR OF THE PARTY OF TH		- Longie		4	2611	2910	3186		3545	OTTO S	CEDAL STATE	CONTRACTOR AND ADDRESS OF	CONTRACTOR OF THE	CONTRACTOR OF THE PARTY OF THE	Contract to the second	Company of the Company	Control of the Contro							Control of the Contro		Control of the Contro		
		1		_	4 00		.2257	2580		3159		3413		The Chi																	
<u> </u>		_	-	6.0			9	_	·	-				· · ·																	2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

D.J.Y. A. Tech CETech Jem IV ENDSEM- EXAMINATION (DSY) JUNE-2022

Duration: 03 Hours

Maximum Points: 100

Semester: IV

Program: ELECTRICAL

Course Code: BS-BTE401

Course Name: APPLIED MATHEMATICS-IV

• Attempt any five out of seven questions

Use of scientific calculator is allowed.

QN O.	QUESTION	PO IN TS	СО	BL	PI
QI a)	Let X & Y be two independent binomial variates with parameters $(n_1=6,p=1/2)$ and $(n_2=4,p=1/2)$ respectively. Evaluate $P(X+Y)=3$.	06	1	2	2.1.3
QI	In a partially destroyed laboratory record of an analysis of	06	3	3	1.1.1
b)	correlation data, the following results only are legible: Variance of $X = 9$ Regression equations: $8x - 10y + 66 = 0$ 40x - 18y = 214				
	What are i.Mean, value of x and y				
	ii.Standard deviation of y.				
	iii.Coefficient of correlation between x and y				
QI	Verify whether the following functions can be looked upon as	08	1	1	1.1.2
c)	probability density function? $f(x) = \frac{1}{2}e^{- x }, -\infty < x < \infty$				
QII	The diameters of can tops produced by a machine are normally	10	1	2	2.1.4
a)	distributed with standard deviation of 0.01 cms. At what mean				
	diameter the machine be set that not more than 5% of the can				
	tops produced by the machine have diameters exceeding 3 cms?				
QII	A & B throw alternately a pair of dice whoever throw '9' first	10	2	2	2.3.1
b)	wins the game. If 'A' starts the game. What are their chances of winning?				
QIII		06	1	2	1.1.2
a)	probability distribution of the number of bad eggs in 3, drawn at				
	random, without replacement from this lot.	<u> </u>	_		
QIII		06	1	2	1.1.1
b)	promotional campaign are as under				

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION (DSY) JUNE-2022

9	Shops	A	В	C	D	Е	F	1				
	Before	53	28	31	48	50	42	157		21		
	Campaign					<u> </u>						
	After	58	29	30	55	56	45				į	
	Campaign					<u> </u>			igsqcup			
	Can the cam	 										
QIII	In an examii			*				08	1		1	2.1.4
c)	physics and			•								
	and 46 with				_							
	probability of	of securin	ig total ma	rks (1) 18U	or more	(11) 9	or or					
	below								-			
												=
QIV	A car – hire	firm has	two cars,	which it hi	res out d	ay by	day. The	06	1		3	2.3.1
a)	number of d	emands f	or a cal or	each day	is distrib	uted a	Poisson					
	distribution											
	which neith			ie proporti	on of day	s on v	which					
	some deman								_			
QIV	If $z = ax + b$	y and 'r'	is the cor	relation be	tween x	and y	show	06	2		2	1.1.3
b)	that											
	σ_z^2	$=a^2\sigma_x^2+$	$b^2 \sigma_y^2 + 2a$	$br\sigma_x^{}\sigma_y^{}$								
	Further show	w that										
		$\sigma_{v}^{2} + \sigma_{v}^{2}$	$-\sigma^2$									
	r = -	$\frac{\sigma_{x}^{2} + \sigma_{y}^{2}}{2\sigma_{x}\sigma_{x}}$	<u>^-y</u>									
	1		•	atondord d	loviotion	afw r	r and w					
	Where σ_x , σ_x		_{x-y} are the	Standard d	eviation	or x, j	anu x –					
	y respective							-	<u> </u>			
QIV	Solve the f	_	•	•			method	08	3		1	2.3.4
c)	10x - 5y - 2	z = 3; $4x$	-10y + 3z	x = -3; x + 0	by + 102 =	= -3.						
												
OV	Fit a him and	انسخت الما	ution for t	ha fallavi	na doto o	nd oo		06	1		1	221
QV	Fit a binom				_	na co	mpare	00	1		1	2.3.1
a)	the theoretic		2	$\frac{1}{3}$ $\frac{1}{4}$	5							
	$\frac{\Lambda}{f}$		4 20	34 22	8							
QV	In an experi				<u> </u>	uhero	ulosis the	06	$\frac{1}{1}$		2	1.1.1
b)	following re				uo nom t	abole	aiosis mic	00	1	- 1	4	1.1.1
0)	10110 Wing IV			 -								

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Munbai – 400058

ENDSEM- EXAMINATION (DSY) JUNE-2022

		Affected		N	ot affe	cted		Tata	al		
	Inoculated	267		2'	7		1	38			
	Not Inoculated	757	<u></u>	1	55	^		362			
1	Use Chi square test to preventing tuberculosi	C					08		3	2	2.3.4
) :	Solve the following semethod correct to three $x + y + 54z = 1$ 27x + 6y - z = 6x + 15y + 2z = 1	e decimal pla 10 85	uauon ces:	s by	Gauss	, – gerder					
QVI a)	Compute spearman's following data X 10 1	rank coorelat			nt for 1	he	06		2	1	1.1.3
QVI	12 2	8 25 25	5 50	25	esults		00	ó	1	3	2.1.3
b)	No appeared on die Frequency	1 2 40 3 2	28	50	54	60					
	Show that the die is l										
QVI c)	Using Runge-Kutta r solution at $x = 0.6$ for	method $\{IV^{th}\}$ or $\frac{dy}{dx} = \sqrt{x + t}$	order} - y, giv	find to	ne nun (4) = 0	nerical .41 using h	1	8	3	1	1.1.1
	= 0.2.										
QVI I a)	Using Newton-Raph with $x_0 = 10$ upto 3 p			e root	of x lo	$g_{10} x = 12.3$	4 1	0	3	3	2.1.4
QVI I b)	Solve by Gauss Elin 2x - y + 3z + w = 9, 5x - 4y + 3z - 6w =	3x + y - 4z +	3w = 3	, -2				10	2	2	1.1.3

Œ

Percentage Points of t- distribution

P(|t| > 1.812) = 0.1For $\Phi = 10 \text{ d. o. f.}$ Example

_	-	3	_	_						-																								Ð
3	120	8	40	30	29	26	27	26	25	24	23	22	22	20	19	ā	17	6	5	14	3	ಸ	=======================================	10	60	00	7	6	G	4	. w	2		/-
1.282	1.289	1.296	1.303	1.310	1.311	1.313	1.314	1.315	1.316	1.318	1.319	1.321	1.323	1.325	1.328	1.330	1.333	1.337	1.341	1.345	1.350	1.356	1.363	1.372	1.383	1.397	1.415	1.440	1.476	1.533	1.638	1.686	3.078	0.20
1.645	1.658	1.671	1.684	1.697	1.699	1.701	1.703	1,706	1.708	1.711	1.714	1.717	1.721	1.725	1.729	1.734	1.740	1.746	1.753	1.761	1.771	1.782	1.796	1.812	1.833	1.860	1.895	1.943	2.015	2.132	2.363	2,920	6.314	0.10
1.960	1.980	2.000	2.021	2.042	2.045	2.046	2.052	2,056	2.060	2.064	2.069	2.074	2.080	2.086	2.093	2,101	2,110	2.120	2.131	2.145	2.160	2.179	2.201	2.228	2.262	2.306	2.365	2.447	2.571	2.776	3.182	4.303	12.706	0.05
2.325	2.356	2.390	2.423	2.457	2.462	2.467	2.473	2.479	2.485	2.492	2.500	2.508	2.518	2.528	2.539	2.552	2.567	2.563	2.602	2.624	2.650	2.681	2.718	2.764	2.821	2.896	2.996	3.143	3.365	3.747	4.541	6.965	31.812	0.02
2 576	2.617	2.660	2,704	2.750	2.756	2.763	2.771	2.779	2.287	2.797	2.807	2.819	2.831	2.645	2.661	2.678	2.896	2.921	2.947	2.977	3.012	3.055	3.106	3.169	3.250	3.355	3.499	3.707	4.032	4.604	5.641	9.925	63.657	0.01

Example For $\Phi = 10$ d. o. f.

Percentage Points of χ^2 - Distribution

# .99	
0.95	2,
0.50	ы
0 10	P(χ ²
200	$P(\chi^2 > 15.99) = 0.10$
	± 0.10

49.588	46.693	42.557	780.80	00000		14 083	3
48.276	40.418	71.00/	20.007	29 226	17.70a	14.256	29
46.863	1.1	41 227	37 916	27.336	16.928	13.565	28
10.042	11100	40	36.741	26.336	16.151	12.879	27
A 1	41 856	36.865	35.363	25.336	15.379	12_196	26
44 314	41.566	37.652	34.382	24.337	14.611	11.524	25
42 980	40.270	36.415	32.196	23.337	13.846	10.856	. 4
41.638	38.968	35.172	32.007	22.337	13,091	10.196	2 %
40.289	37.659	33.924	30.813	21.337	12,338	8 542	2 2
38.932	36.349	32.671	29.815	20.337	11,591	8 897	3 2
37.566	35 020	31.410	28.412	19.337	10 851	8.260	6
36.191	33.667	30.144	27.204	18.338	10,117	7.000	3 6
34.805	32.346	28.869	25.989	17.338	9.390	7000	5 5
33.409	30.995	27.587	24,769	16.338	8.672	0.408	<u>.</u>
32.000	29.633	26.296	23.542	15 336	7.962	5.012	† ō
30.578	26.259	24.996	22.307	14.339	7.261	4 229	6 5
29.141	26.673	23.685	21.064	13.339	6.571	4 660	÷ ÷
27.668	25.472	22.362	19.612	12.340	5.692	4,107	: 5
26.217	24.054	21.026	18.549	11.340	5.226	35/1	3 5
24.725	22.616	19.675	17.275	10.341	4 575	3 053	; =
23.209	21.161	18.307	15.987	g.040	0.0		
21.666	19.679	16.919	14, 864	0.343	3 0 40	2558	†
20.090	18.168	15.507	13.362	1.344	2 225	9008	ဘာ ဗ
16.475	16.622	14.067	12.017	0.040	2 10	1 646	00
16.612	15.033	12.592	10.645	0 040	3 167	1 334	7
15.086	13.388	11.070	9.230	n 4	1 628	872	on .
13.277	11.668	9.488		4 351	1 145	554	ØΊ
11.341	8.83/	2.010	7 770	3 357	711	297	4
9.210	0 0 0	7 915	6 25 1	2.366	.352	115	ω
0	7 824	5.891	4.605	1,386	.103	.0201	N
6.635	5.214	3.841	2 706	.455	.00393	000157	
0.01	0.02	0.00	4.10				1

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z=0 to $z=z_1$ which is the probability that z will lie between z=0 and $z=z_1$.

0.120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0910 0.0948 0.0987 1.026 1.064 1103 1.1293 1.1331 1.368 1.406 1.443 1.480 1.2064 1.700 1.736 1.772 1.808 1.843 2.2019 2.2064 2.088 2.123 2.157 2.190 2.257 2.2389 2.422 2.454 2.486 2.517 2.2673 2.2061 2.2083 3.051 3.078 3106 3.264 3.289 3.315 3.340 3365 3.264 3.289 3.315 3.340 3365 3.3485 .3508 3.531 3.554 .3577 3.599 3.310 3.365 3.340 .3523 .3542 .3570 .3599 .3980 3.997 3.340 .3482 .394 .4368 .4414 .	.4990 4990	.4989 .4	4989	.4989	.4988	.4988	.4987	4987	4987	6
0120 0160 0199 0239 0279 0319 0517 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1843 2019 2264 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2567 2389 2764 2794 2823 3286 3523 3051 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3997 3925 3944 3962 3980 3997 4082 4394 4366 4418 4429 </td <td></td> <td>-</td> <td>.4985</td> <td>.4984</td> <td>.4984</td> <td>.4000</td> <td>7007</td> <td></td> <td></td> <td>· </td>		-	.4985	.4984	.4984	.4000	7007			·
0120 0160 0199 0239 0279 0319 0517 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1843 2019 2064 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 32867 2385 3023 3051 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3997 3925 3944 3962 3980 3997 4082 4491 4406	_		.4979	.4978	.4977	1/00	1000	4985	.4981	9
0.120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0910 0.0948 0.0987 1.026 1.064 11.03 1.293 1.1331 1.368 1.406 1.443 1.480 1.664 1.700 1.736 1.772 1.808 1.843 2.2019 2.2054 2.2088 2.123 2.157 2.190 2.2357 2.2985 2.2083 2.2764 2.2486 2.217 2.2667 2.2995 3.023 3.051 3.078 3106 3.2389 .3264 .3289 3.315 3.340 3365 3.485 .3508 .3531 .3554 .3577 .3593 3.3708 .3729 .3740 .3770 .3790 .3810 3.9907 .3825 .3944 .3962 .3980 .3997 4.4864 .4495 .4594 .4406 .4418 .4429 4.4864 .4691 .4599 .4608 .4618 .4625 4.4864 .4671 .4876 .4886 .4863 .4887 4.8971 .4873 .4984 .4864 </td <td></td> <td></td> <td>.4971</td> <td>.48/0</td> <td>ADB4.</td> <td>4000</td> <td>4076</td> <td>4975</td> <td>4974</td> <td>8</td>			.4971	.48/0	ADB4.	4000	4076	4975	4974	8
0.120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0910 0.0948 0.0987 1.026 1.064 11.03 1.293 1.1331 1.368 1.406 1.443 1.480 1.664 1.700 1.736 1.772 1.808 1.843 2.2019 2.2064 2.088 2.123 2.157 2.190 2.257 2.2389 2.422 2.454 2.486 2.517 2.2673 2.2081 2.2764 2.784 2.823 3.2861 3.289 3.315 3.340 3365 3.3485 3.3508 3.531 3.577 3.593 3.3708 3.729 3.740 3.770 3.790 3.810 3.907 3.925 3.944 3.962 3.980 3.997 3.907 3.925 3.944 3.962 3.980 3.997 3.907 3.925 3.944 3.962 3.980 3.997 3.907 3.925 3.944 3.962 3.980 3.997 4.438 4.426 4.418 4.429 4.436 4.416 4.429	_		.490		1000	4088	4967	4966	4965	2.7
0.120 0.0160 0.0199 0.239 0.279 0.319 0.0517 0.0567 0.0596 0.0636 0.0675 0.0714 0.0910 0.948 0.987 1.026 1.064 11.03 1.1293 1.331 1.368 1.406 1.443 1.480 1.2064 1.700 1.736 1.772 1.808 1.844 2.2019 2.264 2.2486 2.2157 2.190 2.357 2.389 2.422 2.454 2.486 2.517 2.2673 2.2087 2.2985 3.023 3.051 3.078 3106 3.2886 .3289 .3315 3.340 3365 3.677 3599 3.3081 .3526 .3570 .3700 .3810 3897 4.082 .4089 .4115 .4131 .4147 .4162 4.236 .4251 .4265 .4279 .4292 .4306 4.4864 .4667 .4686 .4616 .4625 <td></td> <td></td> <td>1000</td> <td>450</td> <td>4950</td> <td>.4957</td> <td>.4956</td> <td>.4955</td> <td>.4953</td> <td>2.6</td>			1000	450	4950	.4957	.4956	.4955	.4953	2.6
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1843 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2923 .2867 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3554 .3573 .3593 .3708 .3729 .3740 .3770 .3790 .3810 .3997 .3925 .3944 .3962 .3980 .3997 .4370		_	4948	4946	.4945	4943	.4941	4940	4938	25
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2823 .2867 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3571 .3593 .3708 .3729 .3740 .3770 .3790 .3810 .3907 .3925 .3944 .3962 .3980 .3997 .4379 .4382			.4931	.4929	.4927	C784.	7701.			
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823 .2987 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3577 .3599 .3708 .3729 .3740 .3770 .3790 .3810 .3997 .3981 .3987 .4992 .4306 .4418 .4429	_		BOR#		. 1007	000	4000	4920	.4918	24
0120 .0160 .0190 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1843 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2993 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3554 .3577 .3599 .3708 .3729 .3749 .3770 .3790 .3810 .3907 .3925 .3944 .3962 .3980 .3997 .4082 .4099 .4115 .4131 .4147 .4162	-		1404	4006	4904	4901	.4898	.4896	.4893	23
0120 0160 0190 0239 0279 0319 0517 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1843 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2895 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4098 4115		_	4944	4879	4875	.4871	.4868	.4864	.4861	2.2
0120 0160 0199 0239 0279 0319 0517 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1843 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2895 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4099 4115	-		4846	.4842	.4838	.4834	.4830	.4826	4821	
0120 0160 0190 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2395 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4099 4115			.4803	.4798	.4793	.4788	.4783	.4778	.4772	20
0120 0160 0190 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1388 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2995 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 354 357 359 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4099 4115 <			.4750	.4744	.4738	.4732	.4726	.4/18	.1/10	Q
0120 0160 0199 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1388 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2794 2794 2823 2967 2396 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3748 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4098 4115 4131	-	*	.4686	.4678	.4671	.4004	.+000		740	0
0120 0160 0190 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1388 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2965 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4099 4115	_		.4608	.4599	- HOP-	7002	1000	4640	4641	8
0120 0160 0190 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2395 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3729 3749 3770 3790 3810 3907 3925 3944 3962 3980 3997 4082 4099 4115		_	0	. 1000		A R D D	4572	.4564	.4554	1.7
0120 .0160 .0190 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2064 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2823 .2967 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3551 .3571 .3599 .3708 .3729 .3749 .3770 .3790 .3810 .3907 .3925 .3944 .3962 .3980 .3997 .4082<	_	-	1446	A ROR	4495	4484	.4474	.4463	.4452	1.6
0120 .0160 .0190 .0239 .0279 .0319 .0617 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823 .2967 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3554 .3577 .3599 .3708 .3729 .3749 .3770 .3990 .3810 .3907 .3925 .3944 .3962 .3980 .3997			4406	4394	.4382	.4370	.4357	.4345	.4332	1.5
0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2764 .2794 .2823 .2967 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3531 .3554 .3577 .3599 .3708 .3729 .3748 .3770 .3980 .3997 .4082 .4099 .4115 .4131 .4147 .4162	-		4279	.4265	.4251	.4236	.4222	7024	7611.	7
0120 0160 0199 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1388 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2064 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2965 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 357 3599 3708 3729 3749 3790 3810 3907 3925 3944 3962 3980 3997	_		.4131	.4115	.4099	.4082	.+000		200	
0120 0160 0199 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2054 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2995 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3631 3554 357 3599 3708 3729 3740 3790 3810	_	_	2965	.0844	.0200	.000	4000	4040	4032	ယ
0120 0160 0199 0239 0279 0319 0617 0557 0596 0636 0675 0714 0910 0948 0987 1026 1064 1103 1293 1331 1368 1406 1443 1480 1664 1700 1736 1772 1808 1844 2019 2064 2088 2123 2157 2190 2357 2389 2422 2454 2486 2517 2673 2703 2734 2764 2794 2823 2967 2995 3023 3051 3078 3106 3238 3264 3289 3315 3340 3365 3485 3508 3531 3554 3577 3599 3708 3720 3740 3750 3599			.0770		2000	ZOGE.	3868	.3869	.3849	1.2
.0120 .0160 .0190 .0239 .0279 .0319 .0617 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823 .2967 .2995 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365 .3485 .3508 .3631 .3654 .3677 .2603	_		7770	3740	3729	3708	.3686	.3665	.3643	
0120 .0160 .0199 .0239 .0279 .0319 .0617 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823 .2967 .2965 .3023 .3051 .3078 .3106 .3238 .3264 .3289 .3315 .3340 .3365			3554	3631	.3508	.3485	.3461	.3438	.3413	0
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823 .2967 .2995 .3023 .3051 .3078 .3106		-	.3315	.3289	.3264	.3238	.3212	.3186	3759	9
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517 .2673 .2703 .2734 .2764 .2794 .2823		-	.3051	.3023	.2995	.2967	.2939	.2910	1882	
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190 .2357 .2389 .2422 .2454 .2486 .2517			.2764	.2734	.2703	.2673	.2642	2611	0002	9
.0120 .0160 .0199 .0239 .0279 .0319 .0617 .0557 .0598 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 .1808 .1844 .2019 .2054 .2088 .2123 .2157 .2190		_	.2454	.2422	.2389	.2357	.2324	1627	2000	0.7
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480 .1664 .1700 .1736 .1772 1808 .1844			.2123	.2088	.2064	.2019	.1985	.1950	.1915	0 0
.0120 .0160 .0199 .0239 .0279 .0319 .0617 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103 .1293 .1331 .1368 .1406 .1443 .1480		- the	.1772	.1736	.1700	1664	.1628	1801	2	
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .1026 .1064 .1103			.1406	. 1368	.133	. 1200		in 1	155	0
.0120 .0160 .0199 .0239 .0279 .0319 .0517 .0557 .0596 .0636 .0675 .0714 .0910 .0948 .0987 .0596 .0636 .0675 .0714		-	. 1020	.0007		1000	1085	1217	1179	03
.0120 .0160 .0199 .0239 .0279 .0319		-	1006	0987	0948	.0910	.0871	.8832	.0793	0.2
.0120 .0160 .0199 .0239 .0279 .0319	-	-	0636	.0596	.0557	.0617	.0478	.0438	.0398	0
	+	-	.0239	.0199	.0160	.0120	.0080	.0040	.0000	0.0
.02 .03 .04 .05 .06 .07 .08 .09			.06	.06	2	.03	.02	2	.9	~

Munshi Nagar, Andheri (W) Mumbai - 400058

S. M. B. Ten (Etat)

ENDSEM- EXAMINATION MAY-2022

Program: ELECTRICAL

Course Code: BS-BTE401

Course Name: APPLIED MATHEMATICS-IV

· Attempt any five out of seven questions

Use of scientific non-programmable calculator is allowed.

Duration: 03 Hours

Maximum Points: 100

Semester: IV

QN O.	QUES	TION							PO IN TS	СО	BL	PI
QI a)	to the	probab	ility of	2 suc	cesse	s in S	5 indepe	ependent trials ndent trials is pendent trials?	06	1	2	2.1.3
QI b)	Use Ta	ylor's sei	ries met	hod to f	ind y	(1.1) giv	$ven \frac{dy}{dx} = x$	$xy^{1/3}y(1)=1$	06	3	3	1.1.1
QI c)	Given mean=	below is 16 then x P(x)	the profind 'a' 8 1/8	obabilit '& 'b' 12 a	y dist and v	ributio ariance 20 1/4	on of a dree of x 24 1/12	x with	08	1	1	1.1.2
QII a)	ounce standa	jars is a rd devia n less th	randon tion 0.0	n variab)5 ounc	ole ha	ving n o	ormal dis y 3% of t	hine puts into 6 tribution with he jars are to he mean fill of	10	1	2	2.1.4
QII b)	Solve, 28x + x + 3y		32 24 up				lowing synal.	ystem:	10	2	2	2.3.1
QIII a)	Five donce.	efective It is not is defect ective by	bulbs a possiblive. Fir	e to jus nd the p	t look robab	at the oility di	bulb and istributio	renty good tell whether or n of the number random from	06	1	2	1.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION MAY-2022

QIII	The sales-data campaign are		cle in six sho	ps before an	d after a sp	ecial pr	romotional	06	1	2	1.1.1
b)	Shops	A	В	С	D	E	F				
	Before	53	28	31	48	50	42				
	Campaign								-		
	After	58	29	30	55	56	45				1
	Campaign				1100						
	Can the camp					.1		00	ļ	 	214
QIII	In an exam	ination m	iarks obtai	ned by stu	dents in i	nather	natics,	08	1	1	2.1.4
c)	physics and										
	and 46 with										
	probability	of securi	ng total m	arks (i) 18	0 or more	e (ii) 9	90 or				
	below										
QIV	Suppose th	at a local	appliance	s shop has	found fr	om ex	perience	06	1	3	2.3.1
a)	that the der	nand for	tube lights	s roughly d	istribute	d as Po	oisson				
<i>a)</i>	with a mea	n of 4 tul	nes ner we	ek. If the s	hop keep	s 6 tul	elights				
	during a pa										
	will exceed										
0.11.7	Prices of s	tile supp	o company	on differe	ent days	n a m	onth were	06	2	12	1.1.3
QIV	found to be	66 65 6	a company 69–70–69	71, 70, 63	6. 64 and	68.	onthi word		-	-	
b)	Discuss wh	ether the	e price of s	hares to be	e 65.						
	Discuss Wi	lother the	price or s							4	1
QIV	Using Eule	er's meth	od find th	ne approxi	nate valı	ie of v	y at $x = 2$	08	3	1	2.3.4
c)											
·	w	here	<u>dy</u> d>	- ζ	$\frac{y-x}{x}$		and				
	V((1) = 2 ta	king h = 0	.2 and com	pare it w	ith ex	act value.				
	1						and the second s				
QV	Fit a binor	nial distri	ibution for	the follow	ing data	and co	mpare	06	1	1	2.3.1
a)	the theoret						•				
a)	X		1 2	3 4	5						
	$\frac{\lambda}{f}$		$\frac{1}{14}$ $\frac{2}{20}$	34 22							
	1 1 -	1		· I		of or	agalaur in	06	$\frac{1}{1}$	2	1.1.1
QV				etween the	uarkness	or ey	ccolour in	00	1	2	1.1.1
•	i C. 41	can from	i the follow	wing data					1	i	
b)	father and	3011 11011.		our of fath							1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM- EXAMINATION MAY-2022

		Dark			Not D	ark	To	tal		
	Dark(Son)	48			90	, - , - <u>, - , - , - , - , - , - , - , -</u>	13	38		
	Not Dark(Son)	80			782		86	52		
	Total	128			872	- Africa (Company)	10	000		
QV c)	Solve the followard form $-3x - 3y + 2z = 4x + 11y - z = 6x + 3y + 12z = 6x + 3y + 3$	nethod (co 20 33		-	_	using Gauss nal places)	08	3	2	2.3.4
QVI a)		od were 10, omple of 12 criod were 5 cr the diets	5, 16, 1 pigs, fo 7, 13, 2 A & B	7, 13, 2 ed on 2, 15, differ	12, 8, 14 diet B, 12, 14	4, 15, 9. the , 18, 8, 21,	06	2	1	1.1.3
QVI b)	No appeared on 1 2 3 4 5 6 die Frequency 40 32 28 50 54 60 Show that the die is biased AVI. 11									2.1.3
	QVI No appeared on 1 2 3 4 5 6 die Frequency 40 32 28 50 54 60 Show that the die is biased									
QVI c)	Using Runge - Kutta n given $y(0) = 1$ at $x = 0$		ourth o	rder, s	olve dy	$\frac{y^2 - x^2}{x^2 + x^2}$	08	3	1	1.1.1
QVI I a)	Using Newton-Raphso			root	of x log	$g_{10} x = 12.34$	10	3	3	2.1.4
QVI	with $x_0 = 10$ upto 3 pla Solve using Gauss-Elin	mination m	ethod				10	3	2	1.1.3
I b)	5x - 9y - 2z + 4w = 7, 10x - 7y + 3z + 5w = 6									

Percentage Points of t-distribution

 $P(\mid t \mid > 1.812) = 0.1$ For $\Phi = 10 \, d. \, o. \, f.$ Example

_																													<u>.</u>					
0.01	63.657	9.925	5.841	4.604	4.032	3.707	3.499	3.355	3.250	3.169	3.106	3.055	3.012	2.977	2.947	2.921	2.898	2.878	2.861	2.845	2.831	2.819	2.807	2.797	2.287	2.779	2.771	2.763	2.756	2.750	2 704	2.660	2.617	2576
0.02	31.812	6.965	4.541	3.747	3.365	3.143	2.998	2.896	2.821	2.764	2.718	2.681	2.650	2.624	2.602	2.583	2.567	2.552	2.539	2.528	2.518	2.508	2.500	2.492	2.485	2.479	2.473	2.467	2.462	2.457	2.423	2.390	2.358	2.325
0.05	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306	2.262	2.228	2.201	2.179	2.160	2.145	2.131	2.120	2.110	2.101	2.093	2.086	2.080	2.074	2.069	2.064	2.060	2.056	2.052	2.048	2.045	2.042	2.021	2.000	1.980	1.960
0.10	6.314	2.920	2.353	2.132	2.015	1.943	1.895	1.860	1.833	1.812	1.796	1.782	1.77.1	1.761	1.753	1.746	1.740	1.734	1.729	1.725	1.721	1.717	1.714	1.711	1.708	1.706	1.703	1.701	1.699	1.697	1.684	1.671	1.658	1.645
0.20	3.078	1.886	1.638	1.533	1.476	1.440	1.415	1.397	1.383	1.372	1.363	1.356	1.350	1.345	1.341	1.337	1.333	1.330	1.328	1.325	1.323	1.321	1.319	1.318	1.316	1.315	1.314	1.313	1.311	1.310	1.303	1.296	1.289	1.282
d/	-	CI.	က	4	တ	9	7	80	တ	0	Ξ	12	13	4	15	16	17	18	0	ଷ	21	22	R	24	52	56	27	58	83	30	40	9	120	¥

Applied Mathematics - IV (CIVII / Const. / Prod.)

(**E**)

Statistical Tables

Percentage Points of χ^2 - Distribution

P ($\chi^2 > 15.99$) = 0.10 For $\Phi = 10 d. o. f.$ Example

8	000157	00393					5
			,455	2.706	3.841	5.214	6 635
	0201	.103	1,386	4.605	5.891	7.824	9.210
	115	352	2.366	6.251	7.815	9.837	11.341
	297	.711	3.357	7.779	9.488	11,668	13.277
	554	1.145	4.351	9.236	11.070	13.388	15.086
	872	1.635	5.348	10.645	12.592	15.033	16.812
	1.339	2.167	6.346	12.017	14.067	16.622	18.475
	1.646	2.733	7.344	13.362	15.507	18.168	20.090
	2,088	3.325	8,343	14.684	16.919	19.679	21.666
	2.558	3.940	9.340	15.987	18.307	21.161	23,209
,,	3 053	4 575	10.341	17.275	19,675	22.618	24.725
•	3 571	5.226	11.340	18 549	21.026	24.054	26.217
	4.107	5.892	12.340	19.812	22.362	25.472	27.688
	4.660	6.571	13.339	21.064	23.685	26.873	29.141
•	4.229	7.261	14.339	22.307	24.996	28.259	30.578
	5.812	7.962	15.338	23.542	26.296	29.633	32 000
	6.408	8.672	16.338	24.769	27.587	30.995	33.409
	7,015	9.390	17.338	25.989	28.869	32.346	34.805
	7.633	10,117	18.338	27.204	30.144	33.687	36.191
_	8.260	10.851	19.337	28.412	31.410	35,020	37.566
	8.897	11.591	20.337	20 R1E	20 674	0.00	000
0,	9.542	12.338	21.337	30.813	33 007	37.650	30.932
7	10.196	13.091	22.337	32 007	36 172	90.00	40.609
=	10.856	13.848	23.337	32 106	36.415	40.940	40.000
-	11.524	14.611	24.337	34.382	37.652	41 566	42 990
-	12.198	15.379	25.336	35.363	38.885	41.856	45.642
-	12.879	16.151	26.336	36.741	40.113	44 140	46 062
7	13.565	16,928	27.336	37.916	41.337	45 410	AB 270
14	14.256	17.708	28.336	39.087	42.557	46.693	49 588
-	14.853	18 493	29.336	40.256	43.773	47.982	50.892

Area Under Standard Normal Curve

The table gives the area under the standard normal curve from z = 0 to $z = z_1$ which is the probability that $z \approx 0$ lie between z = 0 and $z = z_1$.

60.	0359	0753	1141	1517	1879	7000	25.40	2852	3133	3389	3691	3830	4015	4177	4319	4441	4545	4633	4706	4767	4H17	4857	4890	4916	4936	4952	4964	7007	4081	000
80.	0319					2100	_				3599		3997			4429			_		4812					4951		_		
.07	0279				_	2157	-			-	3577					4418			_	_	4808				4932	4949				4086
8	.0239	9690	1026	1406	.1772	2109	2454	2764	3051	.3315	3554	3770	3962	.4131	4279	4406	4415	4608	4686	4750	4803	4846	4841	4909	.4931	4948	4961	4971	4979	4985
90.	.0199	9690	7860.	.1368	.1736	2088	2422	2734	3023	.3289	.3531	.3749	3944	4115	.4265	4394	.4505	.4599	4678	4744	4798	.4842	.4878	.4906	.4929	.4946	.4560	.4970	.4978	4984
8	.0160	7550.	.0948	1331	1700	2054	2389	2703	2995	.3264	.3508	.3729	3925	4099	.4251	.4382	.4495	.4591	.4671	4738	4793	.4838	.4875	.4904	.4927	.4945	.4959	.4989	.4977	4984
89	0120	7150.	0160	1293	1664	2019	2357	2673	2967	.3238	3485	3708	3907	4082	4236	.4370	4484	4582	4664	4732	.4788	4834	.4871	.4901	.4925	4943	.4957	.4968	4977	.4983
9	0800	.0478	.0871	.1255	.1628	1985	2324	2642	2939	.3212	3461	3686	3886	.4066	.4222	4357	4474	.4573	.4656	.4726	.4783	.4830	.4868	.4898	.4922	4941	.4956	4967	.4976	.4982
9.	.0040	.0438	8832	1217	1591	1950	1622	2611	.2910	3186	.3438	.3665	3869	4048	.4207	.4345	.4463	.4564	.4649	.4719	4778	.4826	.4864	.4896	.4920	.4940	.4955	4966	4975	4982
9.	0000	.0398	0793	.1179	.1554	.1915	2257	.2580	2881	3159	3413	.3643	.3849	.4032	4192	.4332	4452	4554	.4641	.4713	.4772	.4821	.4861	.4893	.4918	.4938	.4953	.4965	4874	4981
7	0.0	0.1	0.2	0.3	4.0	0.5	9.0	0.7	8.0	6.0	1,0	_	12	د	4	5	9	1.7	1.8	6.	5.0	2,1	2.2	2	2.4	5.5	5.6	2.7		6.5

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

14/22

D. S. M. B. RE-EXAMINATION, JULY-2022

Program: B.Tech. in Electrical Engineering

Class: Second Year B.Tech. (Electrical)

Course code: MC-BTE 002

Name of the Course: Indian Traditional Knowledge

Date: July 2022

Duration: 3 Hr.

Max. Points: 100

Semester: IV

Instructions: Solve ANY FIVE Questions with elaborative answers in legible handwriting.

Q. No.	Question	Points	00	BL	Ы	Module
Q.1	 a) Explain: 'Concept and Rule of Dharma in India since ancient times' with suitable examples. b) Justify: "India is the unique country with unity in diversity as its 	(10)	1	II	6.1.1	1
	core strength since ancient times" giving suitable examples.	(10)	1	VI	6.1.1	1
Q.2	a) Discuss: Spiritual enrichment of ancient Indian tradition with suitable examples.	(10)	1	I,VI	6.1.1	2
	b) List: Names of Principal Vedas and Upvedas. Justify: "Vedas are the eternal source of knowledge for mankind since time in memory".	(10)	1	I, VI	6.1.1	2
Q.3	a) Explain: With two examples the greatness of wisdom of ancient indian scholars in the field of mathematics and astronomy.	(10)	2	II	6.1.1	3
	b) Discuss: Advancement in the field of science and technology in ancient India.	(10)	2	V	6.1.1	3
Q.4	a) Justify: Advancements in medicinal and healthcare practices in ancient India.	(10)	2	VI	6.1.1	4
	b) Justify: "Yoga is the key for long life with good health" in context of ancient as well as modern India.	(10)	2	VI	6.1.1	4
Q.5	a) List: Names of various Indian classical dance forms and Describe: Any two of them with its significance.	(10)	3	I, V	6.1.1	5
	b) List: Various traditional art forms of ancient Indian and Describe: any one of them.	(10)	3	I, V	6.1.1	5
Q.6	a) Explain: Rich heritage of Indian Traditional Languages since ancient times and significance of any one language of India.	(10)	3	II	6.1.1	6
	b) List: 03 Main epics / literature in Indian tradition. Discuss: Significance and teachings of any one epic / literature.	(10)	3	V	6.1.1	6
Q. 7	a) Discuss: In brief, life, work, philosophy and contribution of Sant Dnyaneshwar Maharaj.	(10)	4	V	6.1.1	7
	b) Discuss: In brief, life, work and teachings of Bhagwan Mahaveer Vardhaman.	(10)	4	V	6.1.1	7

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

DSY END SEMESTER EXAMINATION, JULY-2022 D. J. 4. B. Tech Cetap Jew 14

Program: B.Tech. in Electrical Engineering-DSY

Class: Second Year B.Tech. (Electrical)

Course code: MC-BTE 002

Name of the Course: Indian Traditional Knowledge

Instructions: Solve ANY FIVE Questions with elaborative answers in legible handwriting.

Date: 11 July 2022

Duration: 3 Hr.

Max. Points: 100

Semester: IV

			0
Q.	Question	ints	12 12

Q. No.	Question	Points	00	BL	PI	Module
Q.1	a) Explain: 'Concept and Rule of Dharma in India since ancient times' with suitable examples.	(10)	1	II	6.1.1	1
	b) Justify: "India is the unique country with unity in diversity as its core strength since ancient times" giving suitable examples.	(10)	1	VI	6.1.1	1
Q.2		(10)	1	I,VI	6.1.1	2
	b) Justify: "Nature is the supreme teacher (Guru)" with characteristics of any 03 elements in nature for learnings of Adi yogi Shri Dattatreya.	(10)	1	VI	6.1.1	2
Q.3	 a) Explain: With two examples the greatness of wisdom of ancient indian scholars in the field of mathematics and astronomy. b) Discuss: Advancement in the field of science and technology in ancient India. 	(10) (10)	2	II V	6.1.1	3
Q.4	a) Justify: Advancements in medicinal and healthcare practices in ancient India.	(10)	2	VI	6.1.1	4
	b) Justify: "Yoga is the key for long life with good health" in context of ancient as well as modern India.	(10)	2	VI	6.1.1	4
Q.5	a) List: Names of various Indian classical dance forms and Describe:Any two of them with its significance.b) List: Various traditional art forms of ancient Indian and Describe:	(10) (10)	3	I, V	6.1.1	5
Q.6	any one of them. a) Explain: Rich heritage of Indian Traditional Languages since	(10)	3	II	6.1.1	6
	ancient times and significance of any one language of India. b) Discuss: Significance and teachings of any one great epic / literature of ancient Indian tradition.	(10)	3	V	6.1.1	6
Q .7	 a) Discuss: In brief, life, work, philosophy and contribution of Sant Dnyaneshwar Maharaj. b) Discuss: In brief, life, work and contribution of Chhatrapati Shri Shivaji Maharaj. 	(10) (10)	4	V	6.1.1	7

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

END SEMESTER EXAMINATION, MAY-2022

Program: B.Tech. in Electrical Engineering

Class: Second Year B.Tech. (Electrical)—

Course code: MC-BTE 002

Name of the Course: Indian Traditional Knowledge

Date: May 2022
Duration: 3 Hr.

Max. Points: 100

Semester: IV

Instructions: Solve ANY FIVE Questions.

Q. No.	Question	Points	00	BL	Ы	Module
Q.1	a) Explain: 'Concept and Rule of Dharma in India since ancient times' with suitable examples.b) Justify: 'India is the unique country with unity in diversity as its	(10)	1	II	6.1.1	1
	core strength since ancient times" giving suitable examples.	(10)	1	VI	6.1.1	1
Q.2	a) List: Names of The Vedas and Upvedas. Justify: "Vedas are the eternal source of knowledge for the entire mankid".	(10)	1	I,VI	6.1.1	2
	b) Justify: "Nature is the supreme teacher (Guru)" describing characteristics of any 03 elements in nature, learnings of Adi yogi Shri Dattatreya from these elements of nature.	(10)	1	VI	6.1.1	2
Q.3	a) Explain: With two examples the greatness of wisdom of ancient indian scholars in the field of mathematics and astronomy.	(10)	2	II	6.1.1	3
	b) Discuss: Superior Knowledge of ancient Indian sages explaining the valuable contribution of Maharshi Kanad.	(10)	2	V	6.1.1	3
Q.4	a) Explain: Any one significant medical practice and medical practitioner in ancient India.	(10)	2	II	6.1.1	4
	b) Justify: "Yoga is the key for long life with good health" in context of ancient as well as modern India.	(10)	2	VI	6.1.1	4
Q.5	a) List: Names of various Indian classical dance forms and Describe: Any two of them with its significance.	(10)	3	I, V	6.1.1	5
	b) List: Various traditional art forms of ancient Indian and Describe: any one of them.	(10)	3	I, V	6.1.1	5
Q.6	a) Explain: Rich heritage of Indian Traditional Languages since ancient times and significance of any one language of India.	(10)	3	II	6.1.1	6
	b) Discuss: Significance and teachings of any one great epic of ancient Indian tradition.	(10)	3	V	6.1.1	6
Q.7	a) Discuss: In brief, life, work, philosophy and contribution of Sant Dnyaneshwar Maharaj.	(10)	4	V	6.1.1	7
	b) Discuss: In brief, life, work, philosophy and teachings of Bhagwan Gautam Buddha for the entire mankind.	(10)	4	V	6.1.1	7

D. J. Y. B. Tell LE Ferboica Jem IV Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058 11)7/22

Re Exam July 2022

Program:

Electrical Engineering

Course code: PC-BTE401

Name of the Course: Analog Circuits

Duration: 3 Hour

Maximum Marks: 100

Semester: IV

Solve any five questions out of seven.

Q.		Points	CO	BL	PΙ
No. 1	State whether following statements are True/False. Justify your answer.	0.5		_	1.3.1
A	Efficiency of class A power amplifier is the maximum compared to class	05	1	5	1.3.1
	B and C.	05	5	5	1.3.1
В	Higher the order of the filter, better is the filter. Gain of BJT amplifier is less at higher frequencies compared to midband	05	1	5	1.3.1
C	frequencies.				
D	Oscillator circuit does not require any input signal.	05	5	5	1.3.1
2 A	With respect to power amplifier explain the following terms:	08	1	1	1.4.1
(i)	Conversion efficiency				
(ii)	Distortion				
(iii)	Heat sink				
(iv) B	P _{dmax} Explain working of transformer coupled class B push pull power amplifier. What is crossover distortion? How is it eliminated?	12	1	1	1.4.1
	The state of the s	12	2	3	1.4.1
3 A B	Explain how the 555 is used as a astable multivibrator. For an astable multivibrator, $R_{\Lambda} = 2.2 \text{ K}\Omega$, $R_{B} = 6.8 \text{ K}\Omega$, $C = 0.01 \mu\text{F}$. Calculate Thigh, T _{LOW} , Frequency, Duty cycle.	08	2	3	1.4.1
		10	3	2	1.4.1
4 A	Explain functional diagram of IC 723.	10	3	2	2.1.2
В	Explain the circuit to boost the current of IC 7805.				
5 A	Discuss the reasons for difference in frequency response of BJT amplifier	10	1	I	2.1.2
B (i)	and opamp. Elaborate with suitable diagrams. Explain the term 'Miller capacitance' with respect to BJT amplifier	08	1	2	2.1.2

(ii) Determine the bandwidth of the amplifier shown below if UGB of opamp 02 1 3 2.1.2 is 1 MHz

- 6 A What are the advantages of negative feedback?

 B With the help of suitable block diagram explain the different types of negative feedback. For each type give feedback factor, input resistance, output resistance.
- 2.1.2 Design first order Butterworth LPF at cutoff frequency 1kHz and passband 5 8 7 A gain of 2. Draw circuit diagram. Classify the filter designed as analog/digital, passive/active, audio/radio .Justify the answer. 2.1.2 5 3 Derive the formula for resonant frequency for Wien-bridge oscillator, 8 2.1.2 3 5 B (i) 4
- (ii) Derive the formula for resonant frequency for the database of the component for the circuit of Wein Bridge Oscillator using opamp, the component values used are, R= 5.1 KΩ, C = 1nF, for the feedback network, R_i = 5.1 KΩ and R_i = 12 KΩ for opamp. Draw circuit diagram. Determine whether

the circuit will oscillate or not. If yes, obtain the output frequency.

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058 D. J. Y. B. DSY End Sem July 2022

Program:

Electrical Engineering

Course code: PC-BTE401

Name of the Course: Analog Circuits

Duration: 3 Hour Maximum Marks: 100

Semester: 1V

Solve any five questions out of seven.

Q.No.		Points	CO	BL	Pi
1	State whether following statements are True/False. Justify your answer.		5	5	1.3.1
(i)	Oscillator circuit does not require any input signal.	5	17911-	T	
(ii)	Pulse Width Modulation circuit can be obtained using IC 555	5			
(iii)	Wien bridge oscillator uses positive as well as negative feedback.	5		<u> </u>	
(iv)	Efficiency of linear regulators is less compared to switching regulators.	5			
2 (i)	What is meant by Roll Off rate? What is the roll off rate for the circuit shown below? Given $R_A=33K\Omega$ and $R_B=10K\Omega$ $\begin{array}{c} 0.05\mu\text{F} \\ \text{V}_{in}\text{O} \end{array}$ $\begin{array}{c} 0.05\mu\text{F} \\ \text{I}.2k\Omega \end{array}$	2	5	3	1.6.1
(ii)	Determine the frequency of oscillation for the astable multivibrator using IC-555. Given that $R_A = R_B = 1 \text{K}\Omega$ and $C = 1000 \text{ pF}$.	2	2	3	1.3.1
(iii)	Voltage gain of an amplifier without feedback is 80dB. It decreases to 40dB with feedback. Calculate the feedback factor.	2	4	3	1,3,1
(iv)	Determine the feedback fraction if the voltage gain of an amplifier without feedback is 20 and with negative voltage feedback it is 12.	2	4	3	1.3.1
(v)	To generate a 1MHz signal, which is the most suitable circuit? Why?	2	5	2	1.4.1
(vi)	What do you mean by stop band with respect to active filter?	2	5	2	1.6.1
(vii)	Determine the bandwidth of the opamp if UGB is 1 MHz and the gain is 100dB	2	1	3	1.3.1

(viii)	Calculate the frequency of oscillation.	2	5	3	1.4.1
, ,	2kΩ	1		* .	
		Ì	4		
		1			
	and the same of th	1			
	1κΩ				
	1 kΩ μF				
		1			
		1			
	1 kΩ === 1μF	1			
				1	
	1000 - 5			1	
(ix)	Which type of power amplifier is biased for operation at less than 180° of	-	•		
	the cycle? State the application.	2	1	3	1.3.1
(x)	A transformer-coupled, common emitter amplifier uses a 10:1 winding ratio.				
	What is the load seen by the collector if the secondary drives 10 ohms?				
	S. L D. rower amplifor? What is the need of	8	1	2	1.3.1
3 A	What is the disadvantage of class B power amplifier? What is the need of				
70.40	class AB amplifier? Explain class AB with the help of proper diagrams.	4	1	1	1.3.1
B(i)	Differentiate between small signal amplifier and power amplifier	8	i	3	1.3.1
(ii)	Determine upper cutoff frequency for common emitter amplifier with potential divider bias with R_E bypassed, Given: $V_{cc} = 20V$, $C_{bc} = 36pF$,				
	potential divider bias with RE bypassed, Given: Vec 20 V, Out 20 P, $C_{bc} = 4 \text{ pF}$, $C_{cc} = 1 \text{ pF}$, $C_{wi} = 6 \text{ pF}$, $C_{wo} = 8 \text{ pF}$, $h_{fc} = 100$, $h_{ic} = 1.32 \text{ K}\Omega$,				
	$R_s = 1 \text{ K}\Omega$, $R_1 = 40 \text{ K}\Omega$, $R_2 = 10 \text{ K}\Omega$, $R_C = 4 \text{ K}\Omega$, $R_L = 2.2 \text{ K}\Omega$.				
	$R_{\rm E} = 2 \text{ K } \Omega$.		ļ	<u> </u>	
	NE ZIVA				
4A	With respect to the circuit diagram, Calculate output current coming from	8	3	3	1.3.1
7/1	7805 and coming from the transistor Q ₁ for each load				
	(i) 100Ω (ii) 5Ω (iii) 1Ω .				
	Given $V_{EB (ON)} = 1V$, $\beta = 15$, $R = 7\Omega$			3	
	Viv	i			
			i .		
	R ₹		į		
	[0]		-		
	7805				ì
	In Out				
1	Common				
	₹Rı.		1		
			i	1	
	+ +	-	-	-	
			ا مستوال		1

(i) (ii)	With the corresponding circuit diagram explain use of IC 723 to get output voltage of 5V for output current of 12 A.	06	T	3	3 1.4
(11)	by Cs, Cc, or Cs will be the great	06		+	3 1.3
5A	The state of the s				
	Draw neat block diagram of 555 timer and hence explain the function of	10	2		
B(i)	Diaw a circuit diagram of			'	1.3.
(ii)	calculate the value of C with $R = 120 \text{ k}\Omega$ and the time delay $T = 1000 \text{ ms}$. Why opamp is considered as suitable amplifier at low frequency?	4	2	3	1.4.
6A	in the action frequency?	6	T	3	1.3.1
	Calculate component values needed for first order Butterworth LPF at cutoff frequency 3 kHz and passband gain of 3. Draw circuit diagram. Calculate Bandwidth. Classify the filter whether analog/digital, active/ passive.	10	5	3	1.6.1
B (i)	Identify the circuit. Determine cut off frequency.	4	5	5	1.4.1
	0.047 μF V _{in} 0.047 μF 0.047 μF 5.86 kΩ				
	Draw a neat circuit diagram of RC phase shift oscillator using FET. State expression for frequency. Explain the role of feedback network.	6	5	1	1.3,1
	pite of reduction in gain'	4	5	4	1.6.1
N n	With the help of suitable block diagrams explain the 1800	6	4	1	1.3.1

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Course code: PC-BTE401

Name of the Course: Analog Circuits

(iii) Determine the value of CC

frequency response.

Duration: 3 Hour

Maximum Marks: 100

Semester: IV

Solve	e any five questions out of seven.				
Q. No.		Points	CO	BL	PI
1	Explain with the help of proper circuit arrangements and waveforms applications of IC 555 as		2	2	1.6.1
A	PWM	10			
В	Schmitt trigger	10			
2 A (i)	Explain the terms with respect to power amplifier. (i) Power dissipation capability (ii) conversion efficiency	4	1	2	1.4.1
(ii) _	With the help of neat circuit diagram and characteristics, waveform with load line, show that maximum conversion efficiency of class A power amplifier with series fed load is 25%	6	1	2	1.4.1
B (i)	What is crossover distortion? How is it eliminated? Explain with the help of neat diagrams.	5	i	2	1.4.1
(ii)	A transformer coupled class A power amplifier is to be designed with following specifications. Output ac power 20 watts, load resistance 6Ω , D.C. supply voltage 18V. Efficiency of the transformer is 80%, . Is it	5	1	5	1.4.1
	possible to design the circuit using power transistor ECN149 [$P_{Dmax} = 30$ W, $I_{Cmax} = 4A$, $V_{CEO} = 40$ V]. Justify your answer on the basis of P_{Dmax} .				
3 A	For common emitter amplifier with potential divider bias with R_E bypassed, the lower cutoff frequencies are given. The lower cutoff frequency due to C_S is 61.2 Hz. The lower cutoff frequency due to C_E is 337 Hz. The lower cutoff frequency due to C_C is 111 Hz. Also given: $V_C = 10V_C C_C = 200E_C C_C$	10	1	3	2.1.2
	given: $V_{cc} = 10V$, $C_{be} = 36pF$, $C_{bc} = 4pF$, $C_{ce} = 1pF$, $C_{wi} = 6pF$, $C_{wo} = 8pF$, $h_{fe} = 100$, $h_{ie} = 4.4 \text{ K}\Omega$, $R_s = 600\Omega$, $R_1 = 18 \text{ K}\Omega$, $R_2 = 4.7 \text{ K}\Omega$, $R_C = 1.5 \text{ K}\Omega$, $R_L = 5 \text{ K}\Omega$, $R_E = 1.2 \text{ K}\Omega$. (i) Determine the value of C_s .				
	(ii) Determine the value of C_E .				

(iv) Determine the net lower cutoff frequency. Explain with the help of

- 1.4.1 30 mV, 10 Hz signal is to be amplified to get output of 3.03 V. Draw the Justify the corresponding circuit selecting the proper components. selection. 1.4.1 5 Explain Miller's theorem w.r.t. BJT (ii)
- Refer to the fig. below. Explain role of transistor Q1 in the following 3 1.4.1 4 A circuit.

(ii)

(i)

(ii)

(iii)

В

(i)

(ii) B	Explain use of 7805 to provide 7v. What is current limit protection? what is the arrangement for the same in IC 723? Explian constant current limiting.	10	3	2	1.4.1
5 A (i)	State whether following statements are true or false. Justify your answer. Voltage series feedback is most commonly used in cascaded amplifiers.	5 5	4	5	1.4.1
(ii) B (i)	Negative feedback provides stability of the gain. The distortion in an amplifier with feedback is found to be 3%. The feedback factor is 0.04. When the feedback is removed, the distortion	3	4	3	1.4.1
(ii)	becomes 15%. Find the open and closed loop gain. Gain of the amplifier without feedback is 40. Bandwidth of the amplifier without feedback is 20kHz. Determine the bandwidth with negative	2	4	3	1.4.1
(iii)	feedback of 1 %. If the input to amplifier is 1V, output of an amplifier is 10 V and 100 mV from the output is fed back to the input. Determine value of feedback	2	4	3	1.4.1
(iv)	fraction β. Voltage gain of an amplifier without feedback is 60dB. It decreases to 40dB with feedback. Determine the value of feedback factor.	3	4	3	1.4.1
6A	Determine the type and order of filter used, if it is given that, the gain	2	5	3	1.4,1

increases at the rate of 60dB/decade on the stop band.

explain the terms (i) Passband (ii) Stop band

Higher the order of the filter better is the filter. Explain

Draw the circuit with the designed component values.

Draw the circuit of first order HPF along with frequency response. Hence

Design the circuit of second order LPF with cut off frequency of 3kHz.

1.4.1

1.6.1

1.6.1

1.6.1

2

5

5

5

4

4

3

2

(ii) (i) Gain (ii) easy to tune (iii) use of inductors (iv) isolation
all are the advantages of an active filter. Is the statement correct? If not modify. Explain the same.

5 5 4 1.6.1

7A Identify the circuit. Explain. Determine frequency of oscillation. 5 5 3 2.1

 $\frac{1 \, k\Omega}{1 \, k\Omega} = \frac{1 \, k\Omega}{1 \, \mu F}$

(ii) Explain why oscillator circuit does not require any input signal.

5 5 3 2.1.2

7 In RC phase shift oscillator feedback circuit provides phase shift of 90°. Is

5 5 1.4.1

Phase statement, correct? If not modify Explain with the help of

B the statement correct? If not, modify. Explain with the help of corressponding circuit diagram.

1kn=

Bharatiya ViayaBhayan s

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

End Sem. Re-Examination - July 2022

D.J. M. B. Tech Whermican)

Program: B.Tech. (Electrical)

Course Code: PC-BTE402

Course Name: Electrical and electronic measurement

Maximum Points: 100

Semester: IV

Notes:

1. Question number 1 compulsory.

2. Attempt any four questions out of remaining six.

3. Draw neat diagrams.

4. Assume suitable data if necessary.

Q. No.	Questions	Pts.	СО	BL	PI
1. (a)	Draw the block diagram of a CRO and explain the different components in detail.	15	2	L2	2.1.2
. (b)	For a particular measurement, the wattmeter readings were 5000 W and 1000 W. Calculate the power and power factor if one of the meters has to be reversed.	05	2	L3	2.4.2
·2. (a)	Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).	05		L2	2.1.2
(b)	Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.	15	1	L1	2.2.3
3. (a)	Describe with clear schematic diagram how high voltage, current and power are measured with the help of instrument transformers.	05	2	Li	2.1.2

(b)	Explain in detail a five point calibration method with flow chart.	05	2	L1	2.1.2
(c)	Explain the term 1. Sampling and holding 2. Quantizing and encoding	05	2	L2	2.1.2
(d)	With the help of neat diagram derive expression of shunt resistance (R _{sh}) used in Ammeter.	05	1	L2	2.2.3
4.(a)	With the help of neat block diagram explain in detail working of digital multi-meter.	10	1	L1	2.1.2
(b)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	2.1.2
5. (a)	Explain with the help of a neat diagram and expression how to measure power in the following condition.	10	3	L2	2.4.2
(b)	Draw and explain the operation of a meggar used for high resistance measurement.	10	1	L2	2.2.3
6. (a)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV. This instrument is to be used with a series multiplier to extend its range to 10 V. Calculate multiplier resistance value?	05	3	L3	2.4.2
(b)	Calculate CT burden in following conditions 1000/5A 1000/5A 5A 5A 5A Fig. (b)	05	2	L3	2.2.3

(c)	Explain in short eddy current damping system and derive the expression for damping torque of metal disc.	10	2	L2	2.1.2
7. (a)	With the help of neat diagram explain in details how to measure water level by using Capacitive method	10	2	L2	2.1.2
(b)	With the help of neat diagram explain in detail construction and working principle of photo multiplier.	10	2	L2	2.4.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem. Re-Examination - July 2022

Program: B.Tech. (Electrical)

Course Code: PC-BTE402

Course Name: Electrical and electronic measurement

Duration: 3 hrs.

Maximum Points: 100

Semester: IV

Notes:

Question number 1 compulsory. 1.

Attempt any four questions out of remaining six. 2.

3. Draw neat diagrams.

Assume suitable data if necessary.

Q. No.	Questions	Pts.	CO	BL	PI
1. (a)	Draw the block diagram of a CRO and explain the different components in detail.	15	2	L2	2.1.2
(b)	For a particular measurement, the wattimeter readings were 5000 W and 1000 W. Calculate the power and power factor if one of the meters has to be reversed.	05	2	L3	2.4.2
2. (a)	Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).	05	1	L2	2.1.2
(b)	Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.	15	1	L1	2.2.3
3. (a)	Describe with clear schematic diagram how high voltage, current and power are measured with the help of instrument transformers.	05	2	L1	2.1.2

(b)	Explain in detail a five point calibration method with flow chart.	05	2	L1	2.1.2	1
(c)	Explain the term	05	2	L2	2.1.2	-
	Sampling and holding Quantizing and encoding					
(d)	With the help of neat diagram derive expression of shunt resistance (R _{sh}) used in Ammeter.	05	1	L2	2.2.3	-
4.(a)	With the help of neat block diagram explain in detail working of digital multi-meter.	10	1	L1	2.1.2	
(b)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	2.1.2	
5. (a)	Explain with the help of a neat diagram and expression how to measure power in the following condition.	10	3	L2	2.4.2	
	I_{a} I_{a} I_{AB} I_{AB} I_{AB} I_{AB} I_{AB} I_{CA} $I_{$					The state of the s
(b)	Draw and explain the operation of a meggar used for high resistance measurement.	10	1	L2	2.2.3	1
6. (a)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV. This instrument is to be used with a series multiplier to extend its range to 10 V. Calculate multiplier resistance value?	05	3	L3	2.4.2	-
(b)	Calculate CT burden in following conditions 1000/5A 1000/5A 5A Fig. (b)	05	2	L3	2.2.3	

(c)	Explain in short eddy current damping system and derive the expression for damping torque of metal disc.	10	2	L2	2.1.2
7. (a)	With the help of neat diagram explain in details how to measure water level by using Capacitive method	10	2	L2	2.1.2
(b)	With the help of neat diagram explain in detail construction and working principle of photo multiplier.	10	2	L2	2.4.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem. Examination - June 2022 (DSY)

D.S. 4. 3. Tech (ETell)

Program: B. Tech. (Electrical)

Maximum Points: 100

Course Code: PC-BTE402

Course Name: Electrical and electronic measurement

Semester: IV

Notes:

- All questions are compulsory. 1.
- 2. Draw neat diagrams.
- Assume suitable data if necessary. 3.

N	Questions	Pts.	СО	BL	PI
1. (a)	The four arms of a Maxwell's inductance–capacitance bridge at balance are Arm AB: A choke coil L1 with an equivalent series resistance R1 Arm BC: A non-inductive resistance of 800 Ω Arm CD: A mica capacitor of 0.3 μ F in parallel with a non-inductive resistance of 800 Ω Arm DA: A non-inductive resistance 800Ω Supply is given between terminals A and C and the detector is connected between nodes B and D. Derive the equations for balance of the bridge and hence determine values of L1 and R1. Draw the phasor diagram of the bridge under balanced condition.	15	2	L3	2.4.2
(b)	For a particular measurement, the wattmeter readings were 5000 W and 1000 W. Calculate the power and power factor if one of the meters has to be reversed.	05	2	L3	2.4.2
2. (a)	Find the frequency of the horizontal plates if the frequency applied to vertical plate is 50 Hz for the pattern shown in figure (a) and (b).	05	1	L2	2.1.2

THE STATE OF THE SECONDARY WATER TO HAVE A

(b)	Draw and explain the nature of equivalent circuit and corresponding phasor diagram of a current transformer. Derive expressions for the corresponding ratio error and phase angle error.	15	1	L1	2.2.3
3. (a)	Compare between digital storage oscilloscope and cathode ray oscilloscope	05	2	L1	2.1.2
(b)	Explain in detail a five point calibration method with flow chart.	. 05	2	Li	2.1.2
(c)	Explain the term	05	2	L2	2.1.2
	 Sampling and holding Quantizing and encoding 				
(d)	With the help of neat diagram derive expression of shunt resistance (R_{sh}) used in Ammeter.	05	1	L2	2.2.3
4.(a)	With the help of neat block diagram explain in detail working of digital multi-meter.	10	1	L1	2.1
(b)	With the help of neat diagram explain in detail how to measure time interval between two events digitally?	10	1	L1	2.1.2
5. (a)	The magnetizing current of a ring core current transformer of ratio $1000/5$ A, when operating at full primary current and with a secondary burden of non-inductive resistance of 1Ω is $1 A$ at a power factor of 0.4 Calculate: (i) The phase displacement between primary and secondary current. (ii) The ratio error at full load, assuming that there has been no compensation	10	3	L2	2.4.2
(b)	Draw and explain the operation of a meggar used for high resistance measurement.	10	1	L2	2.2.3
6. (a)	A moving-coil instrument whose resistance is 25Ω gives a full-scale deflection with a voltage of 25 mV. This instrument is to be used with a series multiplier to extend its range to 10 V. Calculate multiplier resistance value?	05	3	L3	2.4.2
(b)	Prove that $\frac{\Delta \rho}{\rho}$	15	2	L3	2.2.5
	$G_f = 1 + 2\nu + \frac{\gamma}{\varepsilon}$				
7. (a)	With the help of neat diagram explain in details how to measure water level by using Capacitive method	10	2	L2	2.1.2
(b)	The deflecting torque of an ammeter varies as the square of the current passing through it. If a current of 5 A produces a deflection of 90°, what deflection will occur for a current of 3 A when the instrument is: (i) Spring controlled (ii) Gravity controlled.	10	3	L3	2.4.2

21/2/12

BharatiyaVidyaBhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

End Sem. Examination - May 2022

S.M. Brack UT.

Program: B. Tech. (Electrical)

Course Code: PC-BTE402

Course Name: Electrical and electronic measurement

Duration: 3 hrs.

Maximum Points: 100

Semester: IV

Notes:

- due. no.1 is

 1. All questions are compulsory.
- 2. Draw neat diagrams.
- Assume suitable data if necessary.

4. Attempt any four questions from the remaining six question

Q. No.	Questions	Pts.	СО	BL	PI
1. (a)	An a.c. bridge circuit working at 1000 Hz is shown in Fig.1. Arm ab is a 0·2 μF pure capacitance; arm be is a 500 Ω pure resistance; arm cd contains .an unknown impedance and arm da has a 300 Ω resistance in parallel with a 0·1 μF capacitor. Find the R and L constants of arm cd considering it as a series circuit.	10	2	L3	2.4.2
(b)	The magnetizing current of a ring core current transformer of ratio 1000/5 A, when operating at full primary current and with a secondary burden of non-inductive resistance of 1 Ω is 1 A at a power factor of 0.4 Calculate: (i) The phase displacement between primary and secondary current. (ii) The ratio error at full load, assuming that there has been no compensation	10	2	L3	2.4.2

2. (a)	Find the frequency of the vertical plates if the frequency applied to horizontal plate is 50 Hz for the pattern shown in figure (a) and (b).	05	1	L2	2.1.2
	(a) (b)				8
2. (b)	With the help of neat diagram explain in details construction and working principal of quality factor meter.	10	1	L1	2.1.2
2. (c)	How to measure time interval between two events using flip flop circuit.	05	1	L1	2.2.3
3. (a)	Compare between digital storage oscilloscope and cathode ray oscilloscope	05	2	L1	2.1.2
(b)	Explain in detail a five point calibration method with flow chart.	05	2	L1	2.1.2
(c)	What is function of integrator in duel slope integrating type voltmeter	05	2	L2	
(d)	With the help of neat diagram derive expression of shunt resistance (R _{sh}) used in Ammeter.	05	1	L2	2.2.3
4.(a)	Draw the block diagram of a CRO and explain the different components in detail.	15	1	L1	2
(b)	Explain the term 1. Sampling and holding 2. Quantizing and encoding	05	1	L1	2.1.2
5. (a)	With the help of neat diagram explain in detail how to measure frequency of given signal using digital frequency meter?	10	3	L2	2.4.2
	3 0 0.5 1.5 1.5 1.5 1.5 Time in second	The second secon			

(b)	Draw null and extreme positions of LVDT transducer to get zero, minimum and maximum output voltage.	10	1	L2	2.2.3
6. (a)	Two watt meters are connected to measure the power consumed by a 3-phase load with a power factor of 0.35. Total power consumed by the load, as indicated by the two watt meters, is 70 kW. Find the individual wattmeter readings.	05	3	L3	2.4.2
(b)	Prove that	15	2	L3	2.2.3
	$G_f = 1 + 2\nu + \frac{-2\nu}{\varepsilon}$				
7.	With the help of neat diagram explain in details how to measure water level by using following methods. a. Resistive method b. Inductive method c. Capacitive method	20	2	L2	2.1.2

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam and Previous Semester Examination July 2022

Program: DSY BTech

DJ. M. B. Tall Duration: 3 Hr

Course Code: PC-BTE403

Seron IV

Maximum Points:100

Course Name: Signals and Systems

Semester:IV

Note:

Attempt any FIVE question out of SEVEN questions.

• Answers to all sub questions should be grouped together.

• In the absence of any data, make suitable assumptions and justify the same.

Q. No.	Questions	Points	СО	BL	Module No.
1a	Classify system $y[n] = n x[n]$ as static/dynamic, linear/non-linear, time-variant/invariant, causal/non-causal and stable/unstable.	05			01
1b	Consider a signal $x(n) = (5)^n u(n)$. Test if the signal is i) energy or power signal. ii) Causal and non-causal signal	05			01
lc	Determine odd and even parts of signal $x[n] = \{4, 1, -2, 1, 5\}.$	05	4		01
1d	Determine output of following system if $x[n] = u[n+2] - u[n-2]$ and $h[n] = 4\delta[n] + 5\delta[n-2] + 8\delta[n+2]$	05			02
2a	In an electrical network the relation between input voltage $x(t)$ and output voltage $y(t)$ is given by $\frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + 6y(t) = x(t)$ where $x(t) = e^{-7t}$ u(t). Use Laplace Transform to determine the output voltage $y(t)$ if initial conditions in the network are $y(0) = -1$ and $\dot{y}(0) = 1$.	10			04
2b	State and prove any two properties of Laplace transform	05			04
2c	Consider a LTI system with transfer function $H(s) = \frac{s+2}{(s+5)(s+7)}.$ Determine its impulse response. Is the system stable?	05			04

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam and Previous Semester Examination July 2022

3a	Calculate the value of $(1/4)^n$ u[n] * $(1/7)^n$ u[n] using continuous time linear convolution. (use Graphical method)	10	02
3b	Consider a system described by a difference equation		
	y[n] + (1/5) y[n-1] = 2 x[n].		
	 i) Determine Impulse response of the system ii) Determine output of the system when input x(n) = (0.5) nu(n) with initial output of the system y(-1) = 1. 	10	02
	(Use time domain method)		
4a	Realize given CT system in series and parallel form $H(s) = \frac{s-5}{(s-2)(s-4)(s-6)}$	10	07
4b	Obtain Direct form I and Direct form II realization of a system with transfer function $H(z) = \frac{5z^2 - 12z + 7}{9z^3 - z^2 + 2z - 5}$.	10	07
5a	Determine complex exponential Fourier series representation of following signal and magnitude of fundamental component (t) 10 15 20 t	08	03
5b	Consider a LTI system represented by $\frac{d^2y}{dt^2} + 3 \frac{dy}{dt} + 4y(t) = x(t)$		5
	 i) Determine its impulse response. ii) Determine output when input x (t) = e^{-4t} u (t) iii) Plot the frequency response of the system 	12	03
	Use Fourier Transform only.		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

Re-exam and Previous Semester Examination July 2022

6a	Determine Inverse ZT of $X(z) = \frac{z}{(z-3)(z-1)}$ using long division method if ROC is i) $ z < 3$ ii) $ z > 3$	10	05
6b	Determine ZT and ROC of following signals i) $x[n] = 2^n u[n] + 3^n u[-n-1]$ ii) $x[n] = e^{\pm j\alpha n} u[n]$	10	05
7a	The output of the system $y[n] = (\frac{1}{5})^n u[n]$ when input applied is $x[n] = (\frac{1}{2})^n u[n]$. i) Determine impulse response of the system. ii) Draw pole-zero plot of the system and comment on the stability iii) Determine the output when input is changed to $x[n] = (\frac{1}{4})^n u[n]$.	10	06
7b	Determine initial and final value of x[n] if $X(z) = \frac{z(z-5)(z-3)}{(z-2)(z-3)(z-1)}$	05	06
7c	If $x(t)=u(t)$, plot $x(t+1)+x(t-1)$.	05	01

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

D.J.Y. B. Tell CETect) Lem IV DSYEnd Semester Examination July 2022

1117/2

Program:

DSY BTech

Duration: 3 Hr

Course Code: PC-BTE403

Maximum Points:100

Course Name: Signals and Systems

Semester:IV

Note:

Attempt any FIVE question out of SEVEN questions

Answers to all sub questions should be grouped together

• In the absence of any data, make suitable assumptions and justify the same.

Q. No.	Questions	Points	со	BL	Module No.
1a	State and prove initial and final value theorem for continuous time systems. Calculate initial and final value of $Y(s) = \frac{4s+2}{s^2+4s+10}$	08			04
1b	In an electrical network the relation between input voltage $x(t)$ and output voltage $y(t)$ is given by $4 \frac{d^2y}{dt^2} + 5 \frac{dy}{dt} + y(t) = x(t)$ where $x(t) = e^{-2t}$ u(t). Use Laplace Transform to determine the output voltage $y(t)$ if initial conditions in the network are $y(0) = -1$ and $\dot{y}(0) = 1$.	12			04
2a	Calculate energy and power of signal $x(n) = (-2.5)^n u(n)$. Classify it as energy or power signal.	05			01
2b	Classify the system $y[n] = x[-n+10]$ as static/dynamic, linear/non-linear, causal/non-causal and stable/unstable.	05			01
2c	Determine output of following system if $x[n] = u[n+2] - u[n-2]$ and $h[n] = \{5, 6, 7, 10\}$	05			02
2d	Test if the signal $x(t) = \cos(2 t) + 4\sin(4t)$ is periodic? If periodic determine fundamental time period.	05			01
3a	Calculate the value of $(1/2)^n$ u[n] * u[n] using continuous time linear convolution. (Graphical method)	08			02

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

DSYEnd Semester Examination July 2022

3b	Consider a system described by a difference equation		
	y[n] = 2 y[n-1] + 10 x[n].		-
	 i) Determine impulse response of the system. ii) Determine output of the system when input x(n) = (0.5) n u(n) with initial output of the system y(-1) = 10. 	12	
	(Use time domain method)		
4a	Realize given DT system in series and parallel form $H(z) = \frac{z-5}{(z-2)(z-3)(z-1)}$	10	7
4b	Obtain Direct form I and Direct form II realization of a system having transfer function $H(s) = \frac{2s^2+12 s+17}{4s^3+s^2+2 s-5}$.	10	7
5a	State and prove any two properties of Fourier Transform.	05	3
5b	Consider a LTI system with transfer function		
	$H(jw) = \frac{j\omega+2}{(j\omega+5)(j\omega+7)}$. Determine its impulse response. When input applied is x (t) = e^{-4t} u (t), determine output y (t).	10	3
	(Use Fourier Transform)		
5c	Plot frequency spectrum of a signal $x(t)=4\cos(5t)+2\sin(5t)-2\cos(10t)+7\sin(15t)$	05	3
6a	Determine Inverse ZT of $X(z) = \frac{z}{z-0.3}$ using long division method if ROC is i) $ z < 0.3$ ii) $ z > 0.3$	08	05
6b	Determine ZT of following signal i) $\cos(\omega_0 \text{ n}) \text{ u}[n] + \sin(2\omega_0 \text{ n}) \text{ u}[n]$ ii) $[n+n^2] \text{ u}(n)$. iii) $(\frac{1}{2})^n \text{ u}[n] * (\frac{1}{4})^n \text{ u}[-n-1]$ Specify ROC for each of them. (Note: * is convolution operator)	12	05
7a	The output of the system $y[n] = 2(\frac{1}{2})^n u[n]$ when input applied is $x[n] = u[n]$. i) Determine impulse response of the system. ii) Draw pole-zero plot of the system and comment on the stability	10	06

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

DSYEnd Semester Examination July 2022

	iii) Determine the output when input is changed to $x[n] = (\frac{1}{4})^n u[n]$.			
7ь	Determine $x[n]$ if $X(z) = \frac{z(z-5)}{(z-2)(z-3)(z-1)}$.	10		06
	Determine initial and final value of x[n].			

S. M. B. Tech LET-end Sem IV

Bharatiya Vidya Bhavan's 2315/2

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Exam

May 2022

Max. Marks: 100

Duration:3 Hr

Class: SY B.Tech

Semester: IV

Program: Electrical

Name of the Course: Signals and Systems

Course Code: PC-BTE403

Instructions:

Figures to the right indicate full marks

In the absence of any data, make suitable assumptions and justify the same.

Q. No	Question	Max. Marks	C O	BL
Qla	Consider a signal defined as $x(t) = \begin{cases} e^{j10t} & for t \le 1 \\ 0 & for t > 1 \end{cases}$ Determine	10	02	02
	its Fourier Transform and plot frequency spectrum of the signal.			
Q1b	Consider a signal $x(t) = e^{-5t}u(t) + e^{2t}u(-t)$. Determine the	05	04	02
	Laplace transform of x(t) and Draw ROC.			
Q1c	Plot unit step response of a system whose transfer function	05	04	03
	$G(s) = \frac{1-2s}{s+1}$. Comment on the stability of the system.			
Q2a	Consider a signal $x[n] = \left(\frac{1}{2}\right)^n u[n] + \sin\left(\frac{\pi}{4}n\right) u[n]$. Determine	05	05	02
	the Z- transform of x[n] and Draw ROC.			
Q2b	Test if a system described by input – output relation, $y(t) = x(t) $ is	05	01	02
	linear, static and time varying ?Justify your answer.			
Q2c	Consider a signal defined as $x(t) = \sin(wo t) u(t)$. Determine its	05	03	03
	Fourier Transform.			
Q2d	Determine if the signal $\cos(\frac{\pi}{5}n)$ is periodic? If yes determine its	05	01	02
	fundamental time period.			
Q3a	Determine convolution x1*x2 if	10	01	02
	i) $x1(t) = e^{-2t} u(t)$ and $x2(t) = u(t)$			

	ii) $x1[n] = \{2, 5, 7, 8, -1\} \text{ and } x2[n] = \{-3, 0, 4, 9\}$	10	04	03
	In a mechanical system the relation between input $x(t)$ and output $y(t)$ is given by $\ddot{y}(t) + 7 \dot{y}(t) + 10y(t) = 4x(t) + 5\dot{x}(t)$ where	10	04	03
	$x(t) = e^{-2t} u(t)$, Determine impulse response and output of the system.			
Q4a	Find the exponential Fourier Series representation of	05	03	03
	$x(t) = 3 + \sin\left(3t + \frac{\pi}{4}\right) + \sin\left(9t + \frac{\pi}{3}\right) .$		-	
	Plot the magnitude and phase spectrum of the signal x(t).			14
Q4b	Determine trigonometric Fourier series of following signal	05	03	03
	5			,
04	Determine inverse Z- Transform of	10	05	02
Q4c	$X(z) = \frac{z^2 + z}{(z - 1)(z + 0.5)}$			
	If ROC is i) z >1 ii) z <0.5			
Q5a	iii) $0.5 < z < 1$ Obtain Direct form I and II realization of a system with transfer function $H(z) = \frac{z^2 + 22 z + 18}{z^3 + 7z^2 + 2 z - 15}$	10	05	03
Q5b	Obtain Series and Parallel realization of a CT system having transfer function $H(s) = \frac{2 s + 10}{s^2 + 9 s + 14}$	10	04	03
Q6a	A causal, linear time-invariant (LTI) system is described by input – output relation y[n] +0.4 y[n-1] – 0.21 y[n-2] = x[n-1]. i) Calculate Transfer function of the system. ii) Draw pole-zero plot of the system. iii) Is the system bounded-input bounded-output (BIBO) stable? Instify your answer.	10	05	04
	iv) Calculate impulse response of the system v) Calculate output of the system if input applied is (0.2) nu[n].			
Q6b	Plot following signals if $x(t) = 4u(t) - 4u(t-4)$.	10	01	0
	i) $x(-t+3)$ iii) $x(2t)$ ii) $x(t+2)$			

	Also plot even and odd part of x(t).			
Q7a	The z-transform of a signal is given by $C(z) = \frac{1}{4} \frac{z^{-1}(1-z^{-4})}{(1-z^{-1})^2}$ Determine its initial and final value.	05	05	03
Q7b	Obtain output of a system using graphical method. The input applied to the system is $x[n] = \beta^n u[n]$ and impulse response is $h[n] = \alpha^n u[n]$. Assume $\beta, \alpha > 0$. When $\beta = \alpha$, what is the value of the output. Verify the result using Z Transform.	10	01, 05	03
Q7c	Consider a causal system whose transfer function is given by $H(z) = \frac{5}{z-1}$. Determine impulse response of the system using long division method. (Determine at-least 4 samples).	05	05	02

7 3

Sardar Patel College of Engi

8	(A Government Aided Autonomous Institute)	SARDAR		
7	Willishi Nagar, Andheri (West) Mumbai 400050	(3)	6	
,	Program: Electrical Engineering S, Tour Ct Texas Se	m 1	COLLE	GEOT
		on: 3 He		1001
Ī	Name of the Course: Microprocessor and Microcontroller Sem. IV	Iarks: 1	00	13/1/
	• Solve any five questions out of seven.		_ 1	
	Answers to all sub questions should be arranged			
	The suitable assumbtions whenever poocean City			
Q.	• Diagrams drawn to support your answer should be clearly visible.			+
1	State whether following statements are True/False. Justify the same.	Points	CO	BL PI
i	After executing the instruction MOV A, 43H the accumulator contents are 43H.	20	1,2	5 1.4.1
		;		
ii iii	8031 is called ROMless 8051.			
iv	WR is used to get the converted data out of the ADC0804 chip			
v	The instruction "SETB P2.1" makes all pins of P2 high. A microcontroller is called a computer on a chip.			
2	What is the result after executing following? Explain	••		
i	MOV A, #35H	20	1	1 1.3.1
ii	ANL A, #0FH			
11	MOV A, # 04H ORL A, # 68H			
iii	MOV B , #94H			
-	MOV A, #79H			
	XRL 0F0H, A			
iv	MOVA,#39H			
	CPL A			
V	MOVA,#66H RRA			
3A	A program to generate a square waves, of 50 Hz frequency on P1.2 using interrupts is to be written. Assume XTAL = 11.0502.	0		
		8	1	3 1.4.1
	values to be loaded in (2) of the initialization required. i.e. determine the			
	Explain what is represented by the following instructions. Specify its			
	significance. MOV IE, #10000010B	2	1	2 1.6.1
Bi ¹	Write a program to take data from P1 and send it to P2 continuously. Explain	4	1	2 121
ii l	JIAW Ine intertacing diagrams will I CD	•	4	3 1.3.1

1.4.1

B ake data from P1 and send it to P2 continuously. Explain Draw the interfacing diagram with LCD and 8051, in which Port 1 is used to connect data bus of 8051. P 2.0, P 2.1 and P2.2 are to be connected to RS, $R/\overline{\boldsymbol{W}}$, \boldsymbol{E} respectively. With respect to the diagram explain the following code.

MOV P1, A SETB P2.0 CLR P2.1 SETB P2.2 ACALL DELAY CLR P2.2 RET

4A	Describe the internal architecture of 8051 microcontroller with neat diagram.	10	1	3	1.4.1	
В	With the help of neat diagram explain RAM allocation in 8051. Hence explain	10	2	2	1.3.1	
	Register banks, stack, bit addressable RAM, scratch pad RAM.					
5	Show the status of the carry, auxiliary carry and parity flag after executing	6	1	2	1.6.1	
A	following instructions					
i	MOV A, #9DH ADD A, #54H).		
ii	Draw the diagram showing the PSW register. Hence select bank 2.	4	1	2	1.6.1	
В	Explain registers TMOD, SCON, SBUF. A program to receive data at a baud rate of 4800 is to be written using timer 1 in mode 2. Explain initialization required i.e. values to be stored in TMOD, SCON, TH1	10	1	3	1.4.1	
	required i.e. values to be stored in TWOD, SCON, TITI					ļ
6 A	Explain with suitable diagram, interfacing of 4x4 matrix keyboard with 8051. Explain the method to detect key press.	10	2	2	1.3.1	
В	Explain the connection between 8051 and DAC0808 with the help of a neat interfacing diagram. Write a program to generate saw tooth waveform.	10	2	2	1.3.1	
7A i	Draw control word format of 8255. Hence find the control word of the 8255 for all the ports A, B, and C as output ports (mode 0).	4	2	3	1.4.1	
ii	Stepper motor is connected to 8051 using port A of 8255. Determine the control word required. Explain the same. How is it moved to the control	6	2	3	1.4.1	
В	register? Determine the address space allocated to data RAM in figure shown below.	10	3	3	1.3.1	
D	Determine the address space anocated to data NAM in figure shown below.					

8051

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute)

Munshi Nagar, Andheri (West), Mumbai – 400058

D. J. Y. B. Tech CET Levy Jerry

DSY End Sem July 2022

Program:

Electrical Engineering

Course code: PC-BTE404

Name of the Course: Microprocessor and Microcontroller

Duration: 3 Hours Max. Marks: 100

Sem. IV

Solve any five questions out of seven.

Answers to all sub questions should be grouped together.

Make suitable assumptions whenever necessary. State clearly the assumptions

t your answer should be clearly visible.

Q. No.	Diagrams drawn to support your answer should be clearly visible.	Points	CO	BI.	PI
1	State whether following statements are True/False. Justify the same.	20	1,2	5	1.4.1
	Serial communication interrupt has a highest priority.		1		
(i)	8051 has on chip DAC				
(ii)	A microcontroller is called a computer on a chip.				
(iii)	The 8051 is a 40-pin IC. Twenty-two pins are needed for the four I/O ports.			1	
(iv)	P3.0 is used to provide RD signal for external memory connection.				
(v)	75.0 is used to provide its signal for external memory			 	
2A	Write a program to take data from P2 and send it to P1 continuously. Explain	4	1	3	1.3.1
(i) (ii)	the same Write a program to move the content of 7 th bit of the A register to pin P0.7,	4	1	3	1.4.1
()	and also save it in RAM location 08H. Explain the code written				
(iii)	An LED is connected to pin P1.7. Write a program using BIT directive to toggle LED forever.	4	1	3	1.3.1
2 B	With the help of neat diagram explain RAM allocation in 8051. Hence explain Register banks, stack, bit addressable RAM, scratch pad RAM.	8	2	2	1.3.1
Q3A	Draw the interfacing diagram with LCD and 8255, in which Port A is used	8	1	2	1.3.1
1	to connect data bus of 8255. PB0, PB1 and PB2 are to be connected to RS, R/\overline{W} , E respectively. With respect to the diagram explain the following initialization command. MOV A, #80H			Page of the control o	
	MOV R1, #CONPORT MOVX @R1, A	2			
(ii)	Determine contents of register B after execution of the following MOV B, #94H MOV A, #79H XRL 0F0H, A	2	1	3	1.3.1

Q3 B	With the help of neat timing diagram explain the role of following pins of ADC 0804. (i) CS (ii) WR (iii) D0-D7 (iv) INTR (v) RD	10	2	2	1.3.1
4. A	A program to generate a square waves, of 50 Hz frequency on P1.2 using interrupts is to be written. Assume XTAL = 11.0592 MHZ. The timer 0 is	8	1	3	1.4.1
(i)	to be used in mode 1. Explain the initialization required. i.e. determine the values to be loaded in (i) timer registers (ii) Interrupt register				
(ii)	Determine the contents of the accumulator after this operation MOV A,#0BH ANL A,#2CH	2	1	3	1.4.1
B (i)	A program to receive data at a baud rate of 4800 is to be written using timer 1 in mode 2. Explain initialization required i.e. values to be stored in TMOD, SCON, TH1	6	1	3	1.4.1
(ii)	With the help of neat diagram showing TCON and IE, explain the code lines below MAIN: SETB TCON.2 MOV IE, # 10000100 B HERE: SJMP HERE END	4	1	3	1.4.1
5A	Explain with suitable diagram, interfacing of 4x 4 matrix keyboard with 8051Explain the method to confirm valid key press.	10	2	2	1.3.1
В	Explain the connection between 8051 and DAC0808 with the help of a neat interfacing diagram. Write a program to generate saw tooth waveform.	10	2	2	1.3.1
6	Explain what is represented by the following part of the code. Specify its significance.	20	1	3	1.4.1
(i)	MOV A , #65H MOV R1, #57H MOV @R1, A INC R1 MOV @R1, A				•
(ii)	MOV SBUF,A ZZYY : JNB TI ZZYY CLR TI RET				
(iii)	ORG 000BH CPL P2.1 RETI				
(iv)	MOV P1, #55H MOV 32H, #200 LOP1: CPL P1 ACALL DELAY DJNZ 32H, LOP1				

S. y. B. Tere (Etal) Lem 10.
Bharativa Vidua Di

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058

End Sem May 2022

Program:

Electrical Engineering

Course code: PC-BTE404

Name of the Course: Microprocessor and Microcontroller

Duration: 3 Hours Max. Marks: 100

Sem. IV

Solve any five questions out of seven.

Answers to all sub questions should be grouped together.

Make suitable assumptions whenever necessary. State them clearly.

Diagrams drawn to support your answer should be clearly visible.

Q. No.	Diagrams arawn to suppo		Points	CO	BI.	PI
1	Match the following two colu		20	1	2	1.3.1
	TCON	contains status information	İ			
	SBUF	Γimer / counter control register.				
	i	dle bit, power down bit		1		
	PSW s	serial data buffer for Tx and Rx.				
	PCON t	imer/ counter modes of operation				
2	A switch is connected to pin	P1 .7. Write a program to check the status of	4	1	3	1.3.1
A	SW and perform the following	ng: (use JB)				
(i)	(a) If SW=0, send letter 'N' t	to P2. (b) If SW=1, send letter 'Y' to P2.				
	Explain the program written					
(ii)	Write a program to transfer c	ontents of register A, R0, R1 of bank 0 to the	4	1	3	1.4.1
	register B, R0, R1 of bank 1 r	espectively using stack operation. Explain the				
	program written					
(iii)		RAM location 37H contains an even value. If	4	1	3	1.4.1
	so, send it to P2. If not, mak	te it even and then send it to P2. Explain the				
	program written					
В	1	ort connected to a temperature sensor. Write a	4	1	3	1.4.1
(i)		d the temperature and test it for the value 75.		1		
		place the temperature value into the registers				
	indicated by the following.					
	,	T < 75, then R1 = T, If T > 75, then R2 = T		1		
	Explain the program written				 	
(ii)	•	P 0.1. Write a program to check the status of	4	1	3	1.4.1
	SW and perform the following	•				İ
		ow pulse to activate siren at P1.7	Ī			
		status) Explain the program written		1	2	1.4.1
Q3	1 1	n instruction to assign the highest priority to	4	1	2	1.4.1
<u>A(i)</u>	serial port interrupt.	D - C	1	ļ.,	3	1.41
(ii)		er B after execution of the following	2	1	3	1.4.1
	MOV B , #44H					
	MOV A, #67H					
	ANL 0F0H, A			1		

		4	1	1	1.3.1
ii) I	Explain difference between RET ands RETI	8	1	3-	1.4.1
3	Explain difference between RE1 and RE11 A square wave signal is applied at pin P3.2. Generate from all pins of port A square wave signal is applied by the frequency of the signal applied				Ŧ
	a course wave which is naving man the xi of				
(1)		2	1	3	1.4.1
ii)	at INTO pin (Pin 3.2). Explain the same. If TCON has the value of 00000101B, what does it signifies?				
-	CCLYL Grayanay on P2.1	8	1	3	1.4.1
4.	A program to generate two square waves, one of 5kHz frequency on P2.1				
A	A program to generate two square waves, one of 3kHz frequency and another of 25kHz frequency on P1.0 using interrupts is to be written. 22 GHZ Both the timers are to be used in mode 2.				1
	and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency on P1.0 using interrupts is a same and another of 25kHz frequency of 25kHz				
(i)	The initialization recolling. L.C. determine				
	in (i) timer registers (ii) Interrupt register	2	1	3	1.4.1
(;;)	in (i) timer registers (ii) Interrupt register Explain what is represented by the following program statements. Hence	ì			1
(ii)	explain action performed.				1
1	MOV A, #55H				
	MOV R0, #47H				
	MOV @R0, A				1
	INC R0				
	MOV @R0, A Substitute The Specify its	4	1	3	1.4.1
В	MOV @R0, A Explain what is represented by the following program. Specify its				
(i)	significance.	ŀ			
(1)	MOV TMOD #20H		Ì	1	
	MOV TH1, #0FAH				
	MOV SCON #50H	1	1	_	14
	SETB TR1		1	1	1
	HERE: JNB RI HERE	1	1		1
	MOV A, SBUF	1	1		
	MOV P1, A	1			
	CLR RI			_	
	SJMP HERE	d 6		2	3 1.4
(ii)	Draw the interfacing diagram with LCD and 8051, in which Port 1 is use to connect data bus of 8051. P 2.0, P 2.1 and P2.2 are to be connected to connect data bus of 8051. P 2.0, P 2.1 and P2.2 are to be connected to connect data bus of 8051.	0			
(11)	to connect data bus of 8051. P 2.0, P 2.1 and 1 2.2 and to	ie			ļ
	to connect data bus of $8031.12.0$, 12.0 ,				
	following code.		<u> </u>		
	MOV P1, A			1	
1	SETB P2.0		į	i	
	CLR P2.1	į		İ	
Ì	SETB P2.2			4	
	ACALL DELAY	į		1	ĺ
	CLR P2.2				
	RET				
	LCD +5V				
	0031 V		Ì	į	
	1 3,00		*		4
1	V _{EC} → \$10K POT				
	P1.7 0/				
	RS R/W E Vss				
	1.17	i		1	1
		1		!	
	P2.0				

5 Å	4x 4 matrix keyboard is to be interfaced with 8051 connecting D0 to D3 of port 1 as rows and D0 to D3 of port 2 as columns. Draw the diagram	10	2	7	1.4.1
**	showing the connection.				
	In the program to determine key pressed the steps involved are 1 confirming valid key press,				
	2. identifying from which row the key is pressed				
	3. determining which column the pressed key belongs to				
В	Explain the method used for step 2 Assuming that clock pulses are fed into pin T1, write a program for counter	10	2	3	1.41
	1 in mode 2, to count the pulses and display the state of TL1 count on port	10	1 4	3	1.4.1
	2 where LEDs are connected. Explain the same.			ļ	
6	State whether the following statements are T/F. Justify (any 5)	20	1	5	1.4.1
(i)	WR is used to get the converted data out of the ADC0804 chip				
(ii)	P3.4 has an alternative function as write control signal for external data				
(iii)	memory. MOV A, #54H				
()	XRL A, #78H				
	After executing above A will contain 2CH.				ļ
(iv)	In IBM PC keyboards, a single microcontroller takes care of hardware and software interfacing of the keyboard.				
(v)	Following two instructions mean same thing.				
	1) BACK: DEC R0				
	JZ BACK 2) BACK: DJNZ RO, BACK				
(vi)	Assuming crystal frequency of 12 MHz, The delay associated with HERE		1		
	loop in delay subroutine is 0.5mS, It is given that machine cycles required for NOP is 1 and DJNZ is 2.				
	DELAY: MOV R3, #100				
	HERE: NOP				
	NOP				
	NOP				
	DJNZ R3, HERE RET				
	Determine the address essioned to the same of the same				
4	Determine the address assigned to the memory chip referring following dia. To assign the addresses from 7000H to 7FFFH to this memory chip what	4	2	3	1.4.1
i)	modification is required to be done?				
	D0			1	
			İ		
	D7				
	D7 D0	Ì			
	₽ A0	ŀ	1		1
	A12 4Kx8				
	A13				
	A14 CS RD WR				
	MEMR MEMW				
	(4) (4) (4)			1	

aum aum

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAM JULY 2022

D.J. 4. B. Tech (Helsica) Sem IV

Program: ELECTRICAL ENGG.

Course Code: PC-BTE405

Course Name: ELECTRICAL MACHINES 1

Duration: 3 hour

Maximum Points: 100

Semester: IV

Notes:

Solve any five questions out of seven

· Make suitable assumptions wherever necessary

• Combine all the sub-questions in a given question together

· All Diagrams should be neat and clear

Q		Question	Ma	C	В	PI
-			rks	0	L	
1	A	Derive EMF induced in DC generator.	10	2	2	1.6.1
-	В	Derive induced torque in DC motor.	10	2	2	1.6.1
2	A	Why parallel operation of transformer is preferred and what are the conditions be satisfied to connect transformers in parallel?	10	3	2	1.6.1
-	В	Derive transformer equivalent circuit.	10	3	2	1.6.1
3		A four-pole dc machine has an armature of radius 12.5 cm and an effective length of 25 cm. The poles cover 75% of the armature periphery. The armature winding consists of 33 coils, each coil having seven turns. The coils are accommodated in 33 slots. The average flux density under each pole is 0.75T. 1. If the armature is lap-wound, (a) Determine the armature constant Ka. (b) Determine the induced armature voltage when the armature rotates at 1000 rpm. (c) Determine the current in the coil and the electromagnetic torque developed when the armature current is 400 A. (d) Determine the power developed by the armature. 2. If the armature is wave-wound, repeat parts (a) to (d) above. The current rating of the coils remains the same as in the lap-wound armature	20	2	3	2.5.2
4	A	Draw terminal voltage and current characteristic of	4	2	2	1.6.1

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

REEXAM JULY 2022

separately excited DC generator	16	3	3	2.5.2
B A single phase, 100 kVA, 2000/200 V two-winding transformer is connected as an auto transformer as shown in figure below such that more than 2000V is obtained at the secondary. The portion ab is the 200 V winding and the portion bc is the 2000 V winding. Compute the kVA rating as an auto transformer		5		
$I_{H} = 500 \text{ A}$ 200 V				
$I_{L} = 550 \text{ A}$ $V_{H} = 2200 \text{ V}$ $V_{L} = 2000 \text{ V}$				
In the magnetic circuit shown below, the relative permeability of the ferromagnetic material is 1200. Neglect magnetic leakage and fringing. All dimensions are in centimeters, and the magnetic material has a square cross-sectional area.		1	3	2.5.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai - 400058

REEXAM JULY 2022

		10 A				
6	A	Where transformer vector groups are required to know? With the help of primary and secondary connections of transformer explain vector groups.	12	3	2	1.6.1
	В	What is hysteresis in magnetic circuits? With the help of B-H loop explain coercive force and residual flux density.	8	1	2	1.6.1
7	A	Draw power flow diagram of DC motor and generator	10	2	3	1.6.1
	В	Explain demagnetizing and cross magnetizing effect in DC machine.	10	2	2	1.6.1

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)

1 4 Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JULY 2022

Program: S.Y. B. Tech

(PSY)

Duration: Three Hour

Maximum Points: 100

Course Code: PC-BTE405

Course Name: Electrical Machines I

Semester: IV

Notes:

1. Question No 1 is compulsory..

2. Attempt any four questions out of remaining five.

2. Draw neat diagrams.

3. Assume suitable data if necessary.

-	Questions	Points	CO	BL
	Answer/Solve any four. a. Explain Biot Savart, Faraday's and Ampere Circuital Law b. Derive the condition for maximum efficiency of a transformer. c. Discuss iron losses in electromagnetic circuits. d. Explain full pitch and short pitch coil. e. Write short notes on High Frequency Transformer.	5+5+5+5		
a	Discuss Lorentz Force Law explaining each term in the equation representing it with clarity	08		
.b	Derive the relation for energy stored in the electromechanical system shown below.	12		
•	Flux Mechanical source Massless magnetic armature			
	source Lossless coil Magnetic core			
	source Lossless to the coll	05		

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JULY 2022

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

END SEMESTER EXAMINATION JULY 2022

	gnetic axis, Steter(s)		
	All stolar (r) Axis at stolar (red) Axis at stolar (red) Axis at refer tield		
•	D OA-Fs OC. Fr sind Faint St sin t		
5 b	Present appropriate analysis for phenomenon oscillating neutral in three phase transformer.	08	
		08	
ōb a			
a	Discuss the concept of ratings of transformer in details.	08	
	Discuss the concept of ratings of transformer in details. Derive the equivalent circuit of single phase transformer.		
a	Discuss the concept of ratings of transformer in details. Derive the equivalent circuit of single phase transformer w.r.t. primary as well as secondary. Draw phasor diagram for any one. Derive simplified form of the equivalent size it.	07	
a o	Discuss the concept of ratings of transformer in details. Derive the equivalent circuit of single phase transformer w.r.t. primary as well as secondary. Draw phasor diagram for any one. Derive simplified form of the equivalent circuit of single phase trahnsformer with relevant and appropriate assumptions generally used for transformer.	07	
0	Discuss the concept of ratings of transformer in details. Derive the equivalent circuit of single phase transformer w.r.t. primary as well as secondary. Draw phasor diagram for any one. Derive simplified form of the equivalent circuit of single phase trahnsformer with relevant and appropriate assumptions generally used for transformer.	07 07 06	
a	Discuss the concept of ratings of transformer in details. Derive the equivalent circuit of single phase transformer w.r.t. primary as well as secondary. Draw phasor diagram for any one. Derive simplified form of the equivalent size it.	07	

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM MAY 2022

S. Y. B. Tuh Cetas Sem 12

20/5/2

Program: ELECTRICAL ENGG.

Course Code: PC-BTE405

Course Name: ELECTRICAL MACHINES 1

Duration: 3 hour

Maximum Points: 100

Semester: IV

Notes:

Solve any five questions out of seven

• Make suitable assumptions wherever necessary

Combine all the sub-questions in a given question together

All Diagrams should be neat and clear

Q		Question	Ma rks	C	B	PI
1	A.	If practically, given transformer's equivalent circuit required to be evaluated then which tests need to be performed? Explain required tests to be performed.	8	3	2	1.6.1
	В	What is armature reaction? How to overcome the effects of armature reaction?	10	2	2	1.6.1
	C.	In 2 pole DC machine 90 mechanical degrees corresponds to how many electrical degrees?	2	1	3	2.5.2
2	A	A 12-pole dc generator has a simplex wave-wound armature containing 144 coils of 10 turns each. The resistance of each turn is 0.011 ohm. Its flux per pole is 0.05 Wb, and it is turning at a speed of 200 rpm. (a) How many current paths are there in this machine? (b) What is the induced armature voltage of this machine? (c) What is the effective armature resistance of this machine? (d) If a 1 Kilo-ohm resistor is connected to the terminals of this generator, what is the resulting induced counter torque on the shaft of the machine? (Ignore the internal armature resistance of the machine.)	14	2	3	2.5.2
	В	Why and where the high frequency transformers are used?	6	3	2	1.6.1
3	A	Which three conditions must be satisfied to voltage buildup in self excited DC generator?	6	2	2	1.6.1

	В	Tests are per Hz transform	formed or or and th	n a 1 phas e followin	e, 10 kVA, 2 g results ar	2200/220 e obtain)V; 60 ed.	14	3	3	2.5.2
		112 transiorin		ircuit test		Circuit te				İ	
			1 *	le open)		oltage si					
			(11 4 210	ie open)	shorted		uc				
1		57.14 .4	220 37		150 V	<u> </u>					
İ		Voltmeter	220 V					1			
1		Ammeter	2.5 A		4.55 A			İ			
I		Wattmeter	100 W		215 W						
		1. Calculate a to HV side 2. Determine tests									
	A	How three pl	ase trans	former ve	ctor group	s are lab	elled?	4	3	2	1.6.1
Company of the control of the contro	В	Fig. E1.1 reprelay. The coi 360 mm. Whe density of 0.8 core is cast ste (a) Find the (b) Comput permeability (c) If the air same flux density	I has 500 en the air 3 tesla is eel. current in e the va of the corgap is zernsity (0.8	turns and gap lengt required the coil. lues of pre. To, find the Co, find the Co, find the Co.	the mean of the are 1.5 meters to actuate permeability to current incore.	core path nm each the rela	h is Ic = a, a flux ay. The relative	16	1	3	2.5.2
		B-H characte				1	1.2	1			
		B (Tesla)	-	0.4 0.0				-			
		H (AT/meter)	190	310 40	510	700	1000				
				Mean path	FIGURE E1.1	<i>N</i> = 500 tu:	rns, $l_c = 36$	cm			
	1		-						1		
		For the magne						10	1	3	2.5.

(Government Aided Autonomous Institute) Munshi Nagar, Andheri (W) Mumbai – 400058

ENDSEM MAY 2022

		 = 1.0 A. Find (a) Flux and flux density in the air gap. (b) Inductance of the coil 					
			-W-W-				
	В	Fig. E1.2 Draw and Explain open circuit characteristics of separately excited DC generator.		10	2	2	1.6.1
6	A		ng ne ng ne 00	14	2	3	2.5.2
		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.4				
	В	What is voltage regulation of transformer? How much is ideal voltage regulation?		6	3	2	1.6.1
	A	Draw power flow diagram of DC motor and generator	1	6	2	3	1.6.1
7		TATELL POLICE TIOL MINERALE OF DO MICHOL MAN POLICEMON					
7	В	What is the condition to get maximum efficiency of transformer? Derive maximum efficiency of transformer		7	3	2	1.6.1